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Abstract: The Oriental migratory locust is a destructive agricultural pest in China. Large-scale locust
area (the area possessing suitable breeding habitat for locusts and has locust infestation) extraction
and its evolution analysis are essential for locust ecological control. Existing methods seldom consider
the spatial differences in the locust development and habitat landscape structures in large areas. To
analyze these effects, our study proposed a landscape-based habitat suitability model (LHS model)
for large-scale locust area extraction based on remote sensing data, taking the middle and lower
reaches of the Yellow River (MLYR) as an example. Firstly, the DD model was used to simulate locust
development and obtain habitat factors of the corresponding dates; secondly, the patch distribution of
different land cover classes and their adjacent landscape characteristics were analyzed to determine
the landscape-based factors memberships; finally, the habitat suitability index was calculated by
combining the factors memberships and weights to extract the locust area. Compared with the
patch-based model using moving windows (patch based-analytic hierarchy process model, R2 = 0.77),
the LHS model accuracy improved significantly (R2 = 0.83). Our results showed that the LHS model
has a better application prospect in large-scale locust area extraction. By analyzing the locust areas
evolution along the MLYR extracted using the LHS model, we found human activities were the main
factors affecting the locust areas evolution from 2016 to 2020, including: (1) planting the plants that
locusts do not like and urbanization caused the decrease of the locust area; (2) the wetland protection
policies may cause the increase of the locust area. The model and research results help locust control
and prevention to realize the sustainable development of agriculture.

Keywords: locust area extraction; remote sensing; landscape structure; degree-day model; land
cover change

1. Introduction

The Oriental migratory locust Locusta migratoria manilensis (Meyen) is the most com-
mon locust in China [1,2]. Locust infestation areas are mainly distributed in the middle
and lower reaches of the Yellow River (MLYR), Bohai Bay, Huai River Basin, and Hainan
Island of China, with an annual area of 1 million to 1.5 million hm2 [3]. The outbreak of

Remote Sens. 2022, 14, 1058. https://doi.org/10.3390/rs14051058 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051058
https://doi.org/10.3390/rs14051058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-9381-0744
https://orcid.org/0000-0003-3276-1130
https://orcid.org/0000-0002-2865-5020
https://orcid.org/0000-0002-5577-8632
https://orcid.org/0000-0001-6042-396X
https://orcid.org/0000-0002-1979-1637
https://doi.org/10.3390/rs14051058
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051058?type=check_update&version=2


Remote Sens. 2022, 14, 1058 2 of 19

the locust can pose a severe threat to agricultural production [3,4]. In recent years, locust
management has achieved remarkable results in China. However, in locust areas (the
area possessing suitable breeding habitat for locusts and has locust infestation) accurate
extraction is not easy due to the migration of locusts and the influence of global warming
and human activities [5,6]. Therefore, the aim of this study is to achieve the accurate
extraction of large-scale locust areas, which is significant for locust ecological control and
environmental protection.

The breeding and occurrence of locusts require specific landscape structures and
habitat conditions [7,8]. In recent years, some scholars have determined the habitat factors
affecting the breeding and occurrence of locusts (including vegetation, soil, climate, and
others) based on remote sensing technology [9–21]. The period for obtaining these locust
habitat factors is mainly based on the locust development period from April to September
or an empirical unified time range. However, as factors such as temperature, humidity, and
vegetation can affect the development of locusts, the locust development time varies from
southern to northern regions of China [22]. Therefore, we need to determine the extraction
time range of the factors sub-regionally to extract large-scale locust areas.

In addition, some scholars have also utilized remote sensing technology to quantify
the impact of landscape structure on locusts to realize the extraction of locust areas [7,23].
These studies usually use moving windows to measure the characteristics of landscape
patches within a certain range of each pixel. However, using regular spatial area units to
quantify patches of various shapes in the actual landscape may bring errors [24–26]. At
the same time, the change in land cover class (LCC) directly affects the development of
locusts [8,23]. LCC is also one of the most common factors affecting landscape structure,
functions, and dynamics, with obvious spatial scale attributes [27,28]. Therefore, we need to
consider the distribution structure of LCC and the distribution information of patches in the
actual landscape when analyzing the landscape structure of locust habitats at large scales.

Given the above issues, this study proposed a landscape-based habitat suitability
model (LHS model). In this model, we introduced the degree-day model (DD model, a
tool for pest phenology analysis) [29,30] to simulate the locust development of different
regions and obtain the habitat factors based on the development time. Then, we extracted
the patch distribution of different LCCs and landscape characteristics of neighboring areas
using remote sensing data to simulate the needs of locust habitat at a suitable landscape
level based on class and achieve accurate extraction of locust area. The locust area along
the MLYR is the most frequent and relatively continuous locust infestation area, accounting
for approximately 40% of the total locust area in China [31]. Moreover, due to the effective
management of locust areas in recent years, locusts along the MLYR were not found to be
migratory from 2016 to 2020. The breeding and infestation areas of locusts were consistent
in their spatial distribution. Therefore, the LHS model combining the locust source and
habitat suitability analysis can be used to extract the locust areas along the MLYR from 2016
to 2020. Therefore, this study used the locust area along the MLYR from 2016–2020 as an
example to explore remote sensing extraction and analysis of the locust area at large scales.

The main tasks of this study include (1) quantifying the spatial differences of locust
development time using the DD model and obtaining the habitat factors based on multi-
source remote sensing and auxiliary data; (2) proposing the LHS model for locusts to extract
locust areas at large scales; and (3) analyzing the influence of landscape structure on locust
area extraction and the evolution trend in locust areas along the MLYR extracted using the
LHS model. The model and results presented in our study could provide scientific research
support for the accurate extraction of locust areas to improve locust pre-control ability and
realize guaranteed national food security and enable sustainable agriculture.

2. Materials and Methods
2.1. Study Area

In this study, counties/cities/districts along the MLYR (34◦06′51.47”N~38◦10′36.76′′N,
109◦42′14.87′′E~119◦18′43.56′′E) were selected as the study area (Figure 1), including the
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riverine locust area along the Yellow River and coastal locust area around Bohai Bay. The
riverine locust areas were formed by the water level and river channel changes along the
MLYR. These processes created a large area of wasteland or intercropping wasteland with
extensive farming and reeds (Phragmites australis), sedges (Cyperus rotundus L.), barnyard
grass (Echinochloa crusgalli), and other plants locusts like to eat, resulting in perennial
habitats suitable for locust breeding. The coastal locust area is generally located 10−20 km
away from the sea. Areas with less salt are infested with plants that locusts eat, such as reeds
and elephant grass (Imperata cylindrical). The study area has a temperate monsoon climate
and four distinct seasons. The primary terrain is the alluvial plain of the Yellow River.
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Figure 1. The middle and lower reaches of the Yellow River of this study.

2.2. Data
2.2.1. Remote Sensing Data

The remote sensing data used in this study included Landsat OLI with a 30 m spa-
tial resolution from 2010 to 2020, Soil Moisture Active and Passive (SMAP) with 10 km
spatial resolution [32], ERA5-Land dataset(Band: temperature_2m) with 10 km spatial
resolution [33] from 2016 to 2020, Land cover/use class dataset in 2017 from FROM-GLC
(Finer Resolution Observation and Monitoring of Global Land Cover) [34]. Among them,
the ERA5-Land dataset (Band: temperature_2m) was used to determine the extraction time
of each habitat factor. Multitemporal remote sensing images of Landsat and SMAP were
used for habitat factors extraction and landscape structure analysis. The land cover/use
class dataset was used to get samples for the classification of LCC from 2016 to 2020.

2.2.2. Ground Survey Data

National Agro-Tech Extension and Service Center (NATESC) and Plant Protection
Station of Shandong, Henan, Shanxi, and Shaanxi Provinces provided detailed historical
series data and documents of Oriental migratory locust infestation from 2016 to 2020,
including the five-year average infestation area of each county/city/district, the dates of
eggs hatching and third instar nymphs, infestation information, habitat condition, spring
egg information and control measures.



Remote Sens. 2022, 14, 1058 4 of 19

We manually extracted the locust area regionalization along the MLYR from 2016 to
2020 in Arcgis 10.3 after a comprehensive analysis of these egg and infestation information.
The five-year average infestation area was used to determine the weight of each habitat
factor and verify the accuracy of locust area extraction. The dates of eggs hatching and
third instar nymphs were used to obtain the extraction time range of locust habitat factors.

2.3. Methods

This study was performed in three steps (Figure 2). First, habitat factors were obtained
based on locust development simulation of different regions using the DD model. Then,
habitat factors were input into the LHS model to extract locust areas at the class level.
Finally, the LHS model was compared with the patch based-analytic hierarchy process
model (PB-AHP model) using moving windows to assess the advantages of the LHS model
in large-scale locust area extraction and then analyzed the evolution of locust area along
the MLYR. The key technologies and methods used in our study are described below.
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2.3.1. Locust Development Simulation Using the DD Model

We used the DD model to simulate the locust development to get the dates required
for obtaining habitat factors. The ERA5-Land(Band: temperature _2m) product, the dates
of eggs hatching, and third instar nymphs of Shandong, Henan, Shanxi, and Shaanxi
Provinces from NATESC were used as input data into the DD model to simulate locust
development of the four provinces [4,29]. We have simplified the life cycle of the locust
into egg stage, nymph stage, and adult stage [35]. Firstly, the dates of eggs hatching and
temperature data of Shandong, Henan, Shanxi, and Shaanxi provinces were entered into
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the DD model of egg hatching (Equation (1), i = 1) to obtain the dates of egg stage. Secondly,
the dates of nymph stage were calculated by combining the dates of eggs hatching and
third instar nymphs and temperature data into the DD model of nymph development
(Equation (1), i = 2).

∑Di
n = 1

[
∑bn

t = an
(Tn(t)− Ci)/24

]
= 617.7 (1)

i is the stage ‘i’ of the locust, i = 1, 2, referring to egg stage and nymph stage, respectively. Di
is the number of days required to complete locust development of stage ‘i’ in one generation,
thus calculating the corresponding date. n is the nth day of a stage. Tn(t) the temperature
at hour t (1 ≤ t ≤ 24) of the nth day, an is the time point when the temperature exceeds the
development threshold temperature for migratory locusts on the nth day, and bn is the time
point in one day when the temperature is below development threshold temperature on the
nth day. Ci is the temperature exceeds the development threshold temperature for locusts at
stage ‘i’ (C1 = C2 = 14.2 ◦C). ∑bn

t = an
(Tn(t)− Ci)/24 is the DD of nth day. The DD required to

complete one generation is 617.7. Required DD for egg hatching is 210, required DD for nymph
development is 407.7 (during nymph stage, the DD required to complete the development to
the third instar nymph from hatching is 130).

2.3.2. Habitat Factors Obtaining

The breeding and occurrence of locusts are affected by climate, soil, vegetation, and
human activities [5,18,36,37]. As a result, five habitat factors, including soil moisture (SM),
soil salinity (SS), land surface temperature (LST), vegetation coverage (VC), land cover
class (LCC) were selected to extract locust area based on the principle of dominant factors,
relative stability, difference, and remote sensing operation. As locusts were not reported
to have migratory behavior within this study area from 2016 to 2020, we focused on the
impact of habitat on locust hatching and development during the locust egg and nymph
stages. Among them, the obtaining time ranges of SS, SM, and LST were determined by
the egg stage time range, the obtaining time range of VC was determined by the nymph
stage time range, the obtaining time range of LCC was determined by the whole stage. The
obtaining methods of each habitat factor are shown in Table 1. In addition, the source of
locusts is also a critical factor. Locust area regionalization (LAR) represented the locust
source information, which was a polygon shapefile data plot based on the ground survey
information corresponding to the annual spring digging of eggs, combined with the a priori
areas of locust perennial occurrence provided by NATESC and land cover/use data. LAR
consisted of two values, 0 and 1, with 1 representing the presence of the locust source and
0 representing the absence of the locust source.

Table 1. Habitat factors obtaining.

Factors Obtaining Method Data Source Reference

Vegetation coverage (VC) (NDVI − NDVIsoil)/
(

NDVIveg − NDVIsoil
)

Landsat-OLI

[38]
Land surface temperature (LST) Statistical mono window (SMW) algorithm [39]

Soil salinity (SS)
√

G× R [40–42]
Land cover class (LCC) Phenology-based random forest model [43]

Soil moisture (SM) - SMAP -

NDVI is the normalized differential vegetation index, NDVIsoil the NDVI value of pure bare soil pixel,
and NDVIveg is the NDVI value of pure vegetation pixel. G is the green band, R is the red band.

LCC classification was realized by a phenology-based random forest model [43], which
could effectively increase the difference between LCCs with similar spectra [44,45]. First,
Landsat data from 2010 to 2020 were collected. Then, pixels with clouds in each image were
removed [46]. Next, we calculated the average, standard deviation, and median of NDVI,
enhanced vegetation index (EVI) [47], and modified normalized difference water index
(MNDWI) [48,49]. The amplitude and phase of each index were obtained using a harmonic
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model. The above parameters were used as features inputs to the phenology-based random
forest model (100 trees) to generate LCCs from 2016 to 2020. The land cover classification
method was verified by a confusion matrix. The samples used for land cover classification
were randomly selected from a land cover dataset of 4000 sample sites (including 500 sites
each of cropland, forest, grassland, shrub, water, wetland, impervious layer, and bare land)
in 2017 [34]. The training and test samples were divided into a ratio of 7:3.

2.3.3. Locust Area Extraction Using LHS Model

Since changes in the landscape structure of large locust habitats could affect the
locusts breeding and occurrence, information on landscape hierarchy structure and the
patch distribution of the actual landscape should be considered in locust area extraction.
Therefore, we proposed the LHS model for the high-precision extraction of locust areas
(Figure 3). The LHS model required the following processes: (1) analyzing the patch
distribution of LCCs to determine the distribution of habitat factors based on patches
as calculated units; (2) determining factor membership at the class level with the factors
calculated in patches and the influence of surrounding patches; and (3) extracting locust
area with factors membership at the class level and the weight of factors calculated based
on the analytic hierarchy process (AHP).
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(1) Habitat factors obtained based on patches as calculated units

To extract factors based on patches as calculated units, we used multiresolution
segmentation [50–52] to realize patch segments of different LCCs (including wetland,
grassland, cropland, and water) that affect the breeding and occurrence of locusts. The
scale parameters were input into multiresolution segmentation according to the minimum
patch area of different LCCs. Then, scaling [53,54], a method that could derive the aver-
age characteristics of large-scale parameters by using the average values of small-scale
parameters, was introduced to calculate the values of habitat factors based on patches as
calculated units:

Vq,p = ∑Np
j = 1 Vq,j,p/Np (2)

q is 1, 2, . . . , 5, and V1,p, . . . . . . , V5,p represent the values of LCC, VC, SS, SM, and LST,
of patch p. Vq,j,p is the qth habitat factor value of pixel j in patch p, and Np is the number of
pixels contained in patch p.

(2) Habitat factor membership at the class level

According to the relevant literature and data, five habitat factors based on patches
as calculated units (Vq,p) were divided into four memberships (Mq,p), including optimal,
good, general, and poor, and assigned 4, 3, 2 and 1, respectively (Table 2) [4,19,37,55–57].
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Table 2. Suitability membership of each habitat factor.

Surface

Support
1 (Poor) 2 (General) 3 (Good) 4 (Optimal)

VC <20% >75% >50% and ≤75% ≥20% and ≤50%

LCC other cropland grassland water, wetland

SM - <10% or >25% >19% and ≤25% ≥10% and ≤19%

SS >0.80% >0.50% and ≤0.80% >0.20% and ≤0.50% ≤0.20%

LST <20◦C ≥20 ◦C and <25 ◦C or
>40 ◦C and ≤42 ◦C

>34 ◦C and ≤40 ◦C or
≥25◦C and <28 ◦C ≥28 ◦C and ≤34 ◦C

The suitability of patches surrounding wetland is significantly higher than that of
patches around the cropland in the case of the same habitat attributes of the patches.
Meanwhile, the locust area has certain continuity. Therefore, the influence of surrounding
patches should be considered when calculating the factor membership at the class level.
Closer patches have a more decisive influence, so higher weights are assigned to closer
patches. In this study, the reciprocal of the spatial distance between patch centroids was
used to represent the weight of the surrounding patches’ influence on the central patches:

Wi,p =
1√(

xi − xp
)2

+
(
yi − yp

)2
(3)

where
(

xp, yp
)

is the centroid coordinate of the central patch p and (xi, yi) are the centroid
coordinates of the adjacent patch i.

Based on the influence of the surrounding patches on the central patches and the
values of habitat factors based on patches as calculated units, the membership of the five
habitat factors at the class level was calculated by the following:

Mlocust
q,p =

∑Nc
i = 1 Wi,p Mq,i,p

∑Nc
i = 1 Wi,p

(4)

where Mlocust
q,p is the qth locust habitat factor membership of patch p at the class level; q = 1,

2, . . . , 5 represent LCC, VC, SS, SM, and LST, respectively; Nc is the number of patches
surrounding the central patch; Wi,p is the influence weight of the ith surrounding patches
on the central patch p. Mq,i,p is the qth factor membership of the ith patch around the central
patch p.

(3) Locust area extraction

In this study, the habitat suitability index (HSI) (Equation (5)) of locusts was calculated
based on the LHS model to realize locust area extraction. The habitat factor membership at
the class level (Mlocust

q,p ) and the factor weights were required to calculate HSI. AHP [58,59],
as a weighted decision analysis method, was used to calculate the factor weights(Wq). We
randomly selected 28 of the 45 counties/cities/districts with locust infestation to calculate
the correlation between the 5-year (2016–2020) average infestation area and the 5-year
average of each habitat factor in these 28 counties/cities/districts. Then, the absolute
values of these correlation coefficients were input into the AHP to obtain the factor weights.

HSIlocust
p = ∑5

q = 1 Wq Mlocust
q,p × LAR (5)

where HSIlocust
p is the locust habitat suitability score of patch p, ranging from 0 to 4. In this

study, areas with a value less than or equal to two were not considered locust areas, and
areas with a value greater than two were considered locust areas. Wq is the locust habitat
factor weight obtained by AHP, LAR is the locust area regionalization.
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2.3.4. Accuracy Assessment

To analyze the accuracy of the LHS model, we conducted a comparative analysis
between the LHS model and the PB-AHP model [23]. The PB-AHP model used the moving
window method to quantify the influence of surrounding pixels on central pixels and
analyze the locust habitat suitability at the patch level and extract locust areas. We input the
same habitat factors into the PB-AHP model to extract the locust area along the MLYR. We
calculated the correlations (R2) between the 5-year average locust actual infestation area and
5-year average locust area extracted using the LHS and PB-AHP model in the remaining
17 counties/cities/districts. We evaluated the accuracy of this model in real independent
datasets by cross-validation (six groups), which can reduce the chance introduced by a
single random division through multiple divisions while improving the generalization
ability of the model. The mean value of multiple groups validation result was used to verify
and compare the results accuracy of the LHS model. We also compared and discussed the
locust area spatial distributions of these two models in terms of LCC.

R2 = [corr(x, y)]2 =

 ∑n
i = 1(xi − x)(yi − y)√

∑n
i = 1(xi − x)2 ∑n

i = 1(yi − y)2

2

(6)

where corr(x, y) is the Pearson coefficient, which ranges between −1 and 1. xi is the area of
locust area extracted from the ith county/city/district, yi is the actual area that occurred in
the ith county/city/district, and y is the total number of counties/cities/districts used for
verification, which is 17. x and y are the average values of x and y, respectively.

3. Results
3.1. Locust Development of Each Province

Based on climate reanalysis data, auxiliary data, and the DD model, we have simulated
the locust development of each province (Figure 4). The results showed the egg stage in
Shandong was from early-mid April to mid-late May and mid-July to early August, the
nymph stage was from mid-late May to the end of June and early to late August. While the
egg stage in Henan Province was from early April to mid-May and the beginning of July to
late July, and the nymph stage was from mid-May to mid-late June and from late July to
mid-late August. The egg stage of Shaanxi Province was between mid-April and late May,
mid-July and early August, and the nymph stage was from late May to the end of June and
early August to the beginning of September. The egg stage was between early-mid April
and mid-late May, mid-July, and early August, and the nymph stage was from mid-late
May to the end of June and early August to the end of August. The curves of the four
provinces may indicate certain spatial differences in the development of locusts.

3.2. Habitat Factors

Landsat and SMAP data were used to generate distribution maps of locust habitat
factors from 2016 to 2020, including VC, LST, SM, SS, and LCC (taking the Year 2020 as an
example, Figure 5). For LCC, the land cover classification accuracy reached 73% (Table 3).
The lower accuracy of the wetland classification in this study was because the samples
were randomly selected based on global land cover products in 2017. The wetland in this
product is a permanent wetland. The data source for land cover classification has a time
range covering the locust development (mainly from April to September), with relatively
high temperatures and low water levels. Therefore, part of the water in the product is
classified as wetland.
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Table 3. Confusion matrix of the land cover classification in 2017.

Cropland Forest Grassland Shrub Wetland Water Impervious Layer Bare Land UA OA Kappa

Cropland 101 2 10 11 2 0 9 1 0.74

0.73 0.73

Forest 3 146 0 15 0 0 0 0 0.89
Grassland 7 0 98 23 1 3 12 5 0.66

Shrub 14 5 20 112 0 0 1 0 0.74
Wetland 1 0 3 0 80 35 18 6 0.56

Water 0 0 0 0 11 146 3 1 0.91
Impervious layer 17 0 15 1 0 1 110 6 0.73

Bare land 2 0 8 0 16 18 11 85 0.61
PA 0.70 0.95 0.64 0.69 0.73 0.72 0.67 0.82

3.3. Locust Area during 2016–2020 Based on the LHS and PB-AHP Models

LCC, VC, SS, SM, and LST during 2016–2020 were input into the LHS model to obtain
factor memberships at the class level and factor weights (Table 4). According to the weight
analysis, LCC was the most important factor affecting locust breeding and occurrence
along the MLYR, followed by SM and LST, VC, and SS. In this study, locust areas were
extracted for five consecutive years, including 500.68 thousand hm2, 461.59 thousand hm2,
448.34 thousand hm2, 479.57 thousand hm2, and 482.78 thousand hm2 from 2016 to 2020,
respectively. The locust areas in Henan, Shandong, Shaanxi, and Shanxi Provinces ac-
counted for 47.04%, 33.08%, 9.84%, and 10.04% of the total area. In comparison, the
PB-AHP model was used to extract the distribution of the locust areas from 2016 to 2020 in
our study (Figure 6). The locust area extracted by the LHS model had a high correlation
with the actual occurrence area, with an average R2 for six groups of 0.83. While the
corresponding average R2 of the PB-AHP model is 0.77 (Figure 7). This result indicated
that the LHS model is reliable.

Table 4. LCC changes corresponding to the increases/decreases of locust areas.

Factors Initial Importance Final Weights

VC 0.28 0.13
LCC 0.87 0.41
SM 0.47 0.22
SS 0.13 0.06

LST 0.39 0.18

We analyzed the locust area distributions extracted by the LHS model and the PB-AHP
model using the transition matrix method. The areas that could be extracted by the LHS
model but not be extracted by the PB-AHP model and the areas that could be extracted by
the PB-AHP model but not be extracted by the LHS model were obtained. Typical areas
were selected for a more detailed comparison to show the advantages of the LHS model in
locust area extraction (Figure 8). The results of the LHS model in the area where the LCC
was wetland (Figure 8a) and the areas adjacent to the two LCCs (Figure 8b) were more in
line with the actual locust area.
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3.4. Locust Area Evolution

This study mapped LCC changes corresponding to the regions where the locust area
increased and decreased from 2016 to 2020 (Table 5, Figure 9). The increase of the locust
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area was mainly due to the conversion of water into wetland, cropland into wetland and
grassland. Among them, the areas where water was converted to wetland were distributed
along the Yellow River, mainly in the border of Shaanxi Province and Shanxi Province and
the coastal counties/cities/districts of Shandong Province. The areas where cropland was
converted to wetland were mainly distributed in the border of Shaanxi Province and Shanxi
Province and the area along the Yellow River in Zhengzhou City and Sanmenxia City of Henan
Province. While the areas where cropland was converted to grassland were mainly distributed
in counties/cities/districts of Shaanxi Province, Shanxi Province, and western Henan Province
(Figure 9a). The decrease of the locust area was mainly due to the transformation of grassland
and cropland into shrub, wetland into water and cropland into impervious layers. Among
them, the areas where grassland and cropland transformed to shrub, cropland transformed to
impervious layer, were more evenly distributed within the study area. The areas where wetland
transformed into water were distributed along both sides of the Yellow River (Figure 9b).

Table 5. LCC changes corresponding to the increases/decreases of locust areas.

Locust Area Evolution 2016 2020 Area/Thousand hm2 Total Area/Thousand hm2

Increase
Cropland Wetland 37.59

74.39Water Wetland 24.59
Cropland Grassland 12.21

Decrease

Grassland Shrub 39.92

92.29
Cropland Shrub 26.01
Cropland Impervious layer 13.47
Wetland Water 12.89Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 22 
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4. Discussion
4.1. Assessment and Analysis of Locust Area Extraction

The breeding and occurrence of locusts are affected by many factors. Among them, climate
factors, mainly including temperature and precipitation, have an essential impact on locust
development [55,60]. LST and SM were used in this study to characterize the impacts of
temperature and precipitation on locust development. For nymph and adult, relative moisture
is also very important. However, this study has not yet considered this factor due to the lack
of existing relevant expert knowledge. We will explore the relative moisture in subsequent
studies. Soil has a more significant impact on eggs hatching [16,61], so SM and SS were chosen
as habitat factors to analyze the locust area distribution. Vegetation is also an important factor
affecting locust development [62]. Both vegetation coverage and vegetation type affect the
foraging of locusts, so VC and LCC were selected as habitat factors in this study. The impact
of human factors on locust breeding and occurrence is mainly reflected by the human use of
land resources, so our study used LCC to represent human factors [63,64]. SM, SS, LST, VC, and
LCC were selected in this study to extract locust areas through comprehensive analysis. The
selection of these five habitat factors took into account the influence of all factors on the key
development stages of locusts, allowing the locust area extraction model to be more reasonable
from a biological point of view. To obtain the optimal factors in a large area, we used the DD
model to simulate locust development in different regions and extract habitat factors based
on these time ranges. If there is no distribution of locust sources, the areas suitable for locust
would not always have locust infestation. Therefore, LAR was input into the LHS model to
characterize the locust sources.

In addition, locust habitats are geographically continuous patches with specific hydrograph-
ical and landscape structures [7,8], so the landscape structure should be considered to realize
large-scale locust area extraction. Landscape structure research is a scale-sensitive analysis [35].
We needed to choose an appropriate landscape scale for the study area at different spatial scales
to extract locust areas. LCC represents important hydrological rules, vegetation requirements,
and landscape distributions in locust areas, and the changes of LCC directly affects the evolution
of locust area on large scales. Therefore, this study used class-level analysis in landscape ecology
to quantify the impact of landscape structure on the extraction of locust areas. By analyzing the
locust area distribution extracted by the PB-AHP model and the LHS model, it can be found
that the PB-AHP model is not as effective as the LHS model for the extraction of wetland areas
(Figure 8a). Among the LCCs, wetland provides suitable conditions for eggs hatching. However,
the suitability of other factors (such as vegetation) would affect the extraction of locust areas in the
wetland area. The LHS model considered the hierarchical information of the landscape structure
by dividing the LCCs firstly and extracting the patches, which strengthened the influence of
LCC and made the extraction of locust areas corresponding to wetland areas more reasonable.
The PB-AHP model used the moving window method with regular space area units to quantify
the impact of the landscape structure may bring certain errors due to the different patch shapes
in the actual landscape [28]. The patches formed by adjacent homogeneous pixels should have
the same attributes [7]. We used patches as the calculation unit to make the extraction of locust
areas more continuous. We also considered the influence of surrounding patches to better the
response of locusts to the landscape structure in the extraction of adjacent patches with different
LCCs (Figure 8b). The five-year average area of extracted locust area from 2016 to 2020 using the
LHS model was highly correlated with the actual 5-year average infestation area (LHS model:
R2 = 0.83, PB-AHP model: R2 = 0.77). The higher accuracy indicated that it was more appropriate
to use the class level instead of the patch level to extract the locust area at the larger spatial scale.
It also suggested that the landscape scale used for analysis should be different for different spatial
scales. Further numerical analysis and validation will be carried out if more detailed spatial
distribution point data can be obtained subsequently.

4.2. Locust Area Evolution Trend with LCC Change

LCC directly affects the breeding and occurrence of locusts, and LCC also represents
the joint influence of human and natural factors. Therefore, we plotted the transfer matrices
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of LCC corresponding to the increased and decreased locust areas from 2016 to 2020
(Table 4) to further analyze the driving factors of locust area evolution along the MLYR.
The results showed that the conversion between wetland and water led to the change
of locust area distribution. The area of water converted to wetland in the MLYR was
larger than the area of wetland converted to water, which indicated that the Yellow River
water discharge decreased in these five years. There might be two main reasons for the
decrease in the water discharge of the Yellow River. One reason was the decrease in rainfall
along the MLYR from 2016 to 2020. The other reason was the continuous reclamation of
forests and swamps weakened the water storage capacity of the Yellow River, enhanced the
continental climate, and reduced the flow of the Yellow River. The conversion of cropland
to wetland would also lead to an increase in the regions of locust areas. Among them,
the counties/cities/districts in Shaanxi and Henan Provinces where the areas of cropland
converted into wetlands located were mostly the implemented areas for the wetland
ecological protection policies and measures in the Yellow River Basin (Figure 9a). Wetlands
are rich in animal and plant resources. However, human’ development and utilization
of wetlands have greatly destroyed the wetland ecosystem, causing natural wetlands to
face serious threats in China. Therefore, the wetland protection and restoration of the
Yellow River basin has become an essential task. Since 2016, wetland reserves have been
constructed, including the expansion of the Shaanxi section of the Yellow River wetland,
the effective management of the Sanmenxia section of the Yellow River wetland, and the
Zhengzhou Yellow River National Wetland Park constructed in the Zhengzhou section
of the Yellow River wetland, resulting in the conversion of other LCCs into wetlands. In
addition, the decreased locust areas due to the conversion of grassland and cropland to
shrub (Figure 9b) might be caused by the changes of gramineous plants that locusts prefer
to eat into planting peanuts, asparagus (Asparagus officinalis L.), and other plants that locusts
do not like [8,65,66]. The areas where the cropland changes to the impervious layer were
evenly distributed in this study area (Figure 9b), indicating that the urbanization process is
accelerating in the provinces along the MLYR.

From 2016 to 2020, the locust area along the MLYR first decreased and then increased.
The difference between the area of the locust area in 2016 and 2020 is 17.90 thousand hm2.
We analyzed the driving factors based on LCC changes for the evolution of locust areas,
which mainly included human and natural factors (Table 6). The results showed that
human activities have affected the changes in the locust areas to a greater extent in the past
five years. Among them, the main factor leading to the decrease in locust areas might be
planting peanuts, asparagus, and other plants that locusts do not like instead of gramineous
plants. The main factor leading to the increase in the distribution of locust areas might be
the wetland restoration and protection policies.

Table 6. Driving factors of locust area evolution during 2016–2020.

Locust Area
Evolution Factors LCC Change Specific Reasons for Evolution

Increase

Natural factors Water–wetland The decrease in rainfall in the Yellow River basin from 2016 to 2020
and the flow of the Yellow River.

Human factors

Water–wetland
The continuous cultivation of forests and swamps caused the

weakening of the Yellow River’s capacity to store water and the
decrease in the flow of the Yellow River.

Cropland–wetland Policies and measures for ecological restoration of the Yellow River
wetlands implemented in recent years.

Cropland–grassland The relocation of residents along the MLYR resulted in the
abandonment of cropland and the formation of new wasteland.

Decrease

Natural factors Wetland–water The flow of the Yellow River.

Human factors
Grassland–shrub The changes of gramineous plants that locusts prefer to eat into

planting peanuts, asparagus, and other plants that locusts do not like.Cropland–shrub
Cropland–impervious layer The continuous increase in urbanization.
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5. Conclusions

In this study, a large-scale locust area extraction model (LHS model) that considers the
biological characteristics and habitat landscape structures based on multi-source remote
sensing and auxiliary data was proposed. Additionally, we compared the accuracies of
the PB-AHP model and the LHS model in large-scale locust area extraction. The result
demonstrated that the LHS model has a better extraction effect than the PB-AHP model in
wetland areas and adjacent areas of two LCCs. Compared with the PB-AHP model, the
accuracy of the LHS model has been significantly improved (R2 = 0.83), indicating that
the locust habitat suitability analysis based on a suitable landscape level could effectively
improve the accuracy of the locust area extraction. We analyzed the evolution of the locust
area along the MLYR from 2016 to 2020 extracted using the LHS model. The results showed
that the increase in the distribution of locust areas might be due to the increase in wetland
areas caused by the wetland protection and restoration policies [67]. The locust areas
disappearing might be mainly caused by planting peanuts, asparagus, and other plants
that locusts do not like.

This study attempted to analyze locust habitat suitability and extract locust areas, and
explore the application of these results. These findings provided accurate information on
locust control implementation areas for NATESC. They can help prevent the omission of
potential locust occurrence areas, and help control the use of pesticides to achieve green
and sustainable agriculture.
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