丰台区 2023~2024 学年度第一学期期末练习

高三化学 参考答案

2024.1

第一部分(选择题 共42分)

1	2	3	4	5	6	7
С	A	В	С	В	C	D
8	9	10	11	12	13	14
D	С	A	В	D	В	D

第二部分(非选择题 共58分)

15. (10分)

$$\begin{array}{ccc} (1) & \textcircled{1} & \textcircled{1} & \textcircled{1} & \textcircled{1} \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$$

2 12

- ③ 棱心
- $(2) \ \ \textcircled{1} \ \ H^{^{+}} \ \ Cd^{2+}$
 - ②孤电子对有较大斥力,使 $_{N}$ 中的 C-N-C 键角更小
 - ③ $\begin{bmatrix} -NH \\ -NH \end{bmatrix}$ $^+$ $\begin{bmatrix} CdCl_3 \end{bmatrix}$ $^-$ 是离子晶体,但阴、阳离子体积较大,使得二者之间的作用力相对较弱

(3) ①
$$Pr_2NiO_4$$
 ② $\frac{810}{N_A \times a^2b \times 10^{-21}}$

16. (10分)

(1) ① 加热、粉碎原料

$$21_{+} + 4_{+} + 4Cl^{-} + 8H^{+} = 1_{+} + 1_{+} + 4Mn^{2+} + 4H_{2}O$$

- ③ 防止单质 S 覆盖在矿物表面,阻碍反应进行或方铅矿量一定时,提高 Mn²⁺浸出量
- (2) $MnO_2 + 2Fe^{2+} + 2OH = 2FeOOH + Mn^{2+}$
- (3) $K_{\rm sp}({\rm MnS}) > K_{\rm sp}({\rm ZnS}) > K_{\rm sp}({\rm PbS})$
- (4) 1:4
- (5) Mn₃O₄被 O₂氧化
- 17. (12分)
- (1) 浓硝酸、浓硫酸/△

$$(2) \qquad F \qquad O \qquad DMSO/60^{\circ}C \qquad F \qquad + CH_{3}COOH$$

高三化学 第1页 共2页

(3) 取代反应

(4) 保护氨基

(5)
$$CI \xrightarrow{\mathsf{F}} + CH_3COCOOH \xrightarrow{-\frac{\mathsf{C}_{\$}}{\mathsf{C}_{\mathsf{F}}}} + CH_3COCOOH \xrightarrow{\mathsf{C}_{\mathsf{F}}} COOH + H_2OCOOH + H_2OC$$

18. (12分)

(1)
$$C(s) + O_2(g)$$
 = $CO_2(g)$ 、 $2Mn(s) + O_2(g)$ = $2MnO(s)$ (合理给分)

- $(2) CO_2 + H_2O + Li_2CO_3 = 2LiHCO_3$
- (3) 还原剂
- (4) 当柠檬酸浓度过高时,浸出过程中 H^+ 不能明显被消耗,剩余的 H^+ 会抑制 $C_6H_6O_7^+$ 的形成,不利于 Co^{2+} 形成配合物
- (5) ① 阳极
 - ② $[Co(C_6H_6O_7)] + 2e^{-} + C_6H_8O_7 = Co + 2C_6H_7O_7$
 - ③ pH 3~4 时,随 pH 增大, $c(H^+)$ 降低, H^+ 竞争放电能力减弱,Co 的回收率增加; pH 4~6 时,随 pH 增大,促进 $C_6H_8O_7$ 电离, $c(C_6H_6O_7^+)$ 增大,形成的[Co($C_6H_6O_7$)₂]²⁻、 [Co($C_6H_6O_7$)₃]⁴⁻更稳定,不易放电,Co 的回收率下降

19. (14分)

- (1) $Cu + 2H_2SO_4$ (浓) $\stackrel{\triangle}{=}$ $CuSO_4 + SO_2 \uparrow + 2H_2O$ 饱和 NaHSO₃ 溶液
- (2) 取少量棕黄色溶液于试管中,加水稀释,观察到有白色沉淀产生
- (3) SO₂ 2e⁻ + 2H₂O === SO₄²⁻ + 4H⁺ 加入浓盐酸前, Cu²⁺氧化性弱, 不能氧化 SO₂; 加入浓盐酸后, Cu⁺与 CI形成[CuCl₃]²⁻, 促进 Cu²⁺ + e⁻ === Cu⁺发生, Cu²⁺氧化性增大, 能够氧化 SO₂

(4)
$$SO_2 + 2Cu^{2+} + 6Cl^{-} + 2H_2O = SO_4^{2-} + 2[CuCl_3]^{2-} + 4H^+$$

- $(5) \ SO_2 + 6Cu + 4H^+ + 12Cl^- = Cu_2S + 4[CuCl_3]^{2-} + 2H_2O$
- (6) Na₂S (合理给分)