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ABSTRACT: The two key problems for the industrialization of
Li—S batteries are the dendrite growth of lithium anode and the
shuttle effect of lithium polysulfides (LiPSs). Herein, we report
the Janus separator prepared by coating anionic Bio-MOF-100
and its derived single-atom zinc catalyst on each side of the
Celgard separator. The anionic metal—organic framework
(MOF) coating induces the uniform and rapid deposition of
lithium ions, while its derived single-atom zinc catalyzes the
rapid transformation of LiPSs, thus inhibiting the lithium
dendrite and shuttle effect simultaneously. Consequently,
compared with other reported Li—S batteries assembled with
single-atomic catalysts as separator coatings, our SAZ-AF Janus
separator showed stable cyclic performance (0.05% capacity

¥ Single Atom Zn

decay rate at 2 C with 1000 cycles), outstanding performance in protecting lithium anode (steady cycle 2800 h at 10 mAh
cm?), and equally excellent cycling performance in Li—SeS, or Li—Se batteries. Our work provides an effective separator

coating design to inhibit shuttle effect and lithium dendrite.
KEYWORDS: Janus separator, single-atom zinc, metal—organic framework, shuttle effect, lithium dendrite

ue to their abundant resources, a high theoretical
D specific capacity (1675 mAh g™'), low cost, and
environmental benignity, lithium—sulfur batteries are
considered as a promising candidate for the next-generation
high-energy density storage devices.'™* Despite its bright
application prospect, a lithium sulfur battery still faces some
unsurpassed challenges in its marketization process at present,
with LiPSs shuttle effect and lithium dendrite growth as the
two major problems responsible for the cycling instability and
poor safety of Li—S batteries, which have become the recent
research hotspot and international frontier.' ™
Owing to the high activity of lithium metal, the native SEI
film formed between electrolyte and lithium metal is usually
unstable and fragile during long cycles. It has been reported
that the uniform deposition of lithium ion can be promoted by
building a functional protective layer or coating on the lithium
anode or on the side of the separator facing the lithium
anode.”™'" Compared with traditional porous materials,
metal—organic frameworks (MOFs) are characterized with
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flexible, abundant, and ordered pores, enabling them to screen
or transport a variety of ions or molecules effectively. By
coating MOFs on the side of the separator facing the lithium
anode, the ordered channels of MOFs can enable the lithium
ions to be uniformly deposited on the lithium anode, thus
inhibiting lithium dendrite growth.”™*° In this process, the
MOFs with the anionic framework can use the charge of their
frameworks to promote the rapid and uniform transport of
lithium ions.”*~** Therefore, the uniform and rapid transport
of Li" ions and inhibition of lithium dendrite growth can be
effectively induced by constructing anionic MOFs as the
separator coating via selecting MOFs with anionic framework
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or transforming the charge of the framework by modifying the
ligand and metal nodes.

On the contrary, LiPS shuttle effect can also be effectively
suppressed by coating the material on the separator facing the
sulfur cathode. So far, many kinds of materials have been
applied as separator coatings, such as carbon materials (porous
carbon, carbon nanotubes, graphene), metal oxide/sulfide/
nitride, and single-atomic c;at;ll}rsts.23_31 Among them, due to
more dispersed and efficient atomic-level catalytic sites, single-
atomic catalysts have much better catalytic activity for LiPSs,
which can not only catalyze the mutual conversion between
insoluble short-chain lithium sulfide (Li,S,)) and soluble long-
chain sulfur (Li,S,, 4 < x < 8), accelerate the reaction kinetics,
and effectively inhibit LiPS shuttle but also reduce the
polarization of Li—S battery, thus obtaining excellent cycling
performance, especially at a high rate.”***

Therefore, modifying the separator with corresponding
functional coating materials is a very simple and effective
way to inhibit lithium dendrite growth and LiPS shuttle effect.
In this regard, the Janus separator, which is coated with the
corresponding functional materials on each side, can solve the
two problems efficiently and simultaneously. Thus far, there
have been few reports regarding the catalytic conversion of
LiPSs in the Janus separator in Li—S batteries, and most of
previous studies are based on physical screening or
chemisorption, unable to achieve the expected rate perform-
ance.””~*’ Additionally, the Janus separator for Li—SeS, or Li—
Se batteries also face these two problems, and, to our
knowledge, few related studies have been performed so far.

Against the above background, the Janus separator was
fabricated by using Bio-MOEF-100 with an anionic framework
and its derived single-atom Zn-decorated embroidered ball-like
nitrogen doped carbon (ZnENC) as double-sided coating
materials for the separator, named as SAZ-AF Janus separator
(Scheme 1). On the one hand, anionic Bio-MOF-100 can

Scheme 1. Scheme of SAZ-AF Janus Separator with Efficient
Inhibition of Lithium Dendrites and Shuttle Effect
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effectively adsorb lithium ions, allowing them to be quickly and
uniformly transferred along the ordered channel to the lithium
anode to inhibit lithium dendrite growth, achieving an
outstanding cycling performance of over 2800 h with a voltage
hysteresis of ~55 mV at S mA cm™* and 10 mAh cm™ in a Li—
Li cell. On the other hand, its derived ZnENC can catalyze
LiPS conversion quickly and improve the reaction kinetics to
inhibit the shuttle effect, with a cumulative capacity of 240

mAh ¢! for Li,S. As a result, the SAZ-AF Janus separator
shows a wide range of applications and could be applied to the
Li—S, Li—SeS,, or Li—Se batteries with excellent cycling
performance, which can all work well at a high loading of 4 mg
cm™ and a current density of 1-2 C.

RESULTS AND DISCUSSION

In this study, Bio-MOF-100 with nanosize was prepared by
dissolving a controlled amount of acetic acid adenine, zinc
acetate, BPDC, and CTAB in a solvent mixture of DME,
methanol, and distilled water, followed by stirring and
centrifugation to collect a white precipitate. X-ray diffraction
(XRD) analysis exhibits complete agreement between the
diffraction peaks of the powder and the simulated diffraction
peaks of the Bio-MOF-100 reported in previous studies
(Figure S1).** Scanning electron microscope (SEM) images
show that the obtained MOFs were homogeneously
embroidered ball-like nanospheres with the uniform honey-
comb-like holes on the surface (Figure 1a). After carbonization
at 800 °C in argon atmosphere for 8 h, the Bio-MOF-100-
derived ZnENC was obtained. As shown in Figure S2a,
ZnENC still maintains the morphology of an embroidered ball-

(C) N c

~ 200 nm

(d) ——ZnENC ——Zn foill

—— Bio-MOF-100—ZnO

Intensity (a.u.)

9660 9665 9670
9660 9680 9700 9720 9740 9760

Energy (eV)
()] —znenc () [—zeenc
——Bio-MOF-100 | —fit
—2n foil
v [
= =
z z
o 7]
% X
-
T (s

R(A)

Figure 1. (a) SEM images of Bio-MOF-100. (b) Transmission
electron microscopy (TEM) and EDS mapping images of ZnENC.
(c) High-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) observation of ZnENC (with red
circles indicating single-atom Zn). (d) Zn K-edge X-ray absorption
near edge spectroscopy (XANES) spectra and (e) Fourier
transform (FT) of extended X-ray absorption fine structure
(EXAFS) spectra (k*>-weight). (f) EXAFS R-space fitting curve of
HNCN (inset: ZnENC model, with Zn highlighted in red, N in
navy-blue, and C in gray).
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Figure 2. (a) Li plating/stripping behavior at an area capacity of 2 mAh cm™? and the current density of 1 mA cm™> over 4000 h of Li—Li
symmetric cells with Celgard separator, ZIF-8/Celgard separator, and 1 Bio-MOF-00/Celgard separator. Inset: SEM images of the lithium
film after cycling of symmetric cells with Celgard separator, ZIF-8/Celgard separator, and Bio-MOF-100/Celgard separator. (b) Li plating/
stripping behavior in Li—Li symmetric cells with Bio-MOF-100/Celgard and ZIF-8/Celgard separators at 5 mA cm™> and 10 mAh cm™? over
2800 h. (c) Scheme of uniform lithium deposition induced by Bio-MOF-100.

like nanosphere. The XRD test shows that ZnENC is an
amorphous carbon material and that Zn has been completely
removed at a high temperature without obvious zinc oxide
diffraction peaks (Figure S2b). Energy-dispersive X-ray
spectroscopy (EDX) mapping indicates that ZnENC is rich
in nitrogen and zinc doping (Figure 1b). The X-ray
photoelectron spectroscopy (XPS) test shows that the doped
nitrogen is of a different structure, including pyrrole nitrogen,
pyridine nitrogen, graphite nitrogen, and Zn—N structure
formed with zinc (Figure S4).

In XRD test, no zinc oxide or zinc was found in ZnENC
(Figure S2b), but ZnENC is rich in zinc, indicating that Zn is
distributed on the carbon nanosphere in a smaller size.
Additionally, as shown in the transmission electron microscopy
(TEM) image of ZnENC in Figure 1b, there are no visible
nanoparticles on the carbon nanosphere. All of these results
suggest that zinc may be present in ZnENC at the atomic level,
which was verified by high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM)) (Figure
1c). HAADF-STEM analysis shows that Zn elements are
widely distributed inside the carbon nanosphere with atomic
Zn. The form of Zn species in ZnENC was further investigated
by X-ray absorption spectroscopy (XAS), a method commonly
used to detect the coordination and the valence status of target
atoms. Figure 1d shows the X-ray absorption near-edge
structure (XANES) spectrum of ZnENC, which is seen to be
located between the spectrum of Bio-MOF-100 and Zn foil,
and in the amplified XANES spectra (inset Figure 1d), the
adsorption threshold for ZnENC is closer to Bio-MOEF-100

rather than Zn foil, suggesting a valence state between 0 and
+2 for Zn species in ZnEnc. In Figure le, the extended X-ray
adsorption fine structure (EXAFS) spectra show that the
characteristic peaks of Zn—Zn interactions in Zn foil (2.3 A)
and ZnO (2.9 A) are absent in ZnENC, while the peak around
~1.5 A can be observed in ZnENC, which could be attributed
to Zn—N coordination. After fitting EXAFS data to the Zn—N,
model (inset Figure 1f), Zn—N, is shown as the most likely Zn
atom’s coordination pattern in ZnENC (Figure 1f and Table
S1).

From the chemical formula of Bio-MOF-100,
{[Zng(ad),(BPDC),0,]-4Me,NH,},, we can see that it is an
ionic MOF, with the anion framework of
{[Zng(ad)4,(BPDC)40,]*"}, and free-moving cations of
Me,NH," ions in the channels. Whether Bio-MOF-100 is an
anionic framework was further confirmed by the adsorption
experiments on a series of ionic dyes. As shown in Figure S§,
Bio-MOF-100 can quickly adsorb cationic rhodamine B and
make the solution clear but shows a poor effect on anionic
methylene blue. Thanks to this anionic framework, Bio-MOF-
100 coating could induce lithium ions to transfer along the
channel, achieving a lithium-ion transfer number of 0.79
(Figures S7—S10).

Whether anionic Bio-MOF-100 can induce the uniform
deposition and stripping of Li* on lithium metal anode was
verified by coating it on Celgard separator to assemble the Li—
Li symmetric cells and test the electrochemical performance,
using ZIF-8 with the neutral framework as separator coating
for comparison. As shown in Figure 2a, the Li—Li symmetric
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Figure 3. (a) CV curves for the symmetrical cells of ZnENC and SP. (b) CV curves of ZnENC in symmetric cells at a scan rate of 5—15 mV
s 1. (c) Potentiostatic discharge curves of the Li,Sg/tetraglyme solution at 2.05 V on SP or ZnENC. (d) Scheme for inhibiting shuttle effect

by ZnENC catalytic conversion of LiPSs.

cell assembled with a common Celgard separator displays a
large and unstable polarization voltage of more than 400 mV at
1 mA cm™? and 2 mAh cm™? while the cell with a ZIF-8/
Celgard separator shows a gradually increasing polarization
voltage of more than 100 mV after 230 h. In contrast, the
polarization voltage of the Li—Li symmetric cell with Bio-
MOFEF-100 coated separator is stable at ~30 mV and no short
circuit occurs even after 4000 h of cycling, which is much
better than most previously reported results. After cycling, the
cells were disassembled and the surface of lithium metal was
tested by SEM. As shown in the inset of Figure 2a, the surface
of the lithium metal in the symmetric cell assembled with an
ordinary Celgard separator was powdered and a large number
of lithium dendrites appeared. For the cell with neutral
framework coating, the situation is improving but not
satisfactory. However, for the symmetrical cell with Bio-
MOF-100 coating, even after cycling for 4000 h, the surface of
lithium metal still presents uniform, continuous, and flat
lithium without obvious lithium dendrite.

It can be seen that, in the presence of Bio-MOF-100, the
excellent ion selectivity of Bio-MOF-100 can greatly benefit
the lithium electroplating process under different current
densities, thus significantly improving the rate performance of
symmetrical cells (Figure S12). Even at S mA cm™ and 10
mAh cm ™, the symmetric cell with Bio-MOF-100 coating still
exhibits an ultralow polarization voltage of ~52 mV and a
steady cycle of 2800 h (Figure 2b). Besides, the Li—Cu cell
with Bio-MOF-100 coating also presents good performance
(Figure S13). Collectively, as shown in Figure 2c, the anionic
Bio-MOF-100 can effectively adsorb Li* ions and enable them
to be fast and uniformly transferred along the ordered channel
to the lithium anode. The resulted Bio-MOF-100 coating can
greatly improve the stability of lithium anode electroplating
and stripping process and avoid the generation of lithium
dendrites at a high current density, contributing to the
commercialization of Li—S batteries.

In order to obtain the separator coating with a high catalytic
efficiency for LiPSs to suppress shuttle effect, ZnENC with
single-atom Zn catalyst was prepared after the carbonization of
Bio-MOF-100. In Figures S14 and S1S, the adsorption test and

the XPS spectra both indicate strong interaction between
single-atom Zn and polysulfide ions. The importance of
ZnENC throughout the process of LiPS catalysis was further
demonstrated by coating ZnENC and the other contrast
samples on aluminum foil as working and pair electrodes and
adding LiPSs in the electrolyte to assemble the symmetric cells.
The LiPS catalytic strength could be estimated by the intensity
of the REDOX peaks. Figure 3a shows the cyclic voltammetry
(CV) curves at 5 mV s™' sweep speed and —1.0~1.0 V voltage
range, and no obvious REDOX peaks can be observed in the
symmetric cell with SP. However, in the CV curves, the
symmetric cell with ZnENC shows two pairs of reversible
peaks. The peaks at 0.11 and —0.34 V could be attributed to
the process of reducing Sg to Li,S¢ and Li,S4 to Li,S, while the
peaks at —0.11 and 0.34 V corresponded to the process of
oxidizing Li,S to Li,Ss and Li,Sg to Sg, respectively. Besides,
the Bio-MOF-100-derived single-atomic zinc catalyst has
better catalytic performance relative to its derived metal
oxides, metal nanoparticles, or metal carbides (Figures S17—
$22). Furthermore, due to the electrical conductivity of
mesoporous carbon and the electrocatalytic effect of
monatomic zinc on LiPSs, the REDOX peaks of the assembled
symmetric cell are still extremely obvious even with the
scanning rate further increased to 15 mV s™' (Figure 3b).

In addition, the affinity of the polar surface of the material to
polysulfides can accelerate the conversion kinetics of LiPSs,
which can be measured by thee nucleation/deposition of
LiPSs. The nucleation of Li,S was tested by coating ZnENC
and SP to aluminum foil as working electrodes, using lithium
foils as pair electrodes and LiPSs as an electrolyte to assemble
asymmetric cells. The asymmetric cells were discharged
initially at 0.112 mA to 2.06 V, and then, the constant
potential remained at 2.05 V until the current fell below 10~
A. This voltage was applied to fully convert the higher order
polysulfides, and the deposition rate of Li,S could be reflected
by the integrated area of time and current. In Figure 3, it is
shown that, for the asymmetric cell with ZnENC, Li,S was
transformed immediately after discharge, while the cell with SP
began to produce Li,S after 750 s. The cumulative capacity of
the asymmetric cell with ZnENC reached 240 mAh g™, far
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Figure 4. (a) Cycling performance of Li—S cells with various separators at a 1 C rate. (b) Rate performance of Li—S cells with various
separators. (c) Cycling performance of Li—S cells with various separators at a 2 C rate over 1000 cycles. (d) Cycling performance of the Li—S
cell with the SAZ-AF Janus separator at a 2 C rate and 4 mg cm™ sulfur loading.

higher than the value of only 28 mAh g™' for the cell with SP,
further proving that ZnENC could catalyze the conversion of
Li,S, (x > 4) to Li,S quickly and efficiently. Moreover, the
working electrodes coated with ZnENC or SP were
characterized by SEM after deposition. In Figure S23, a large
amount of Li,S was seen to be uniformly deposited on the
surface of ZnENC, while there was almost no Li,S on the
surface of SP. All of these test results show that the
mesoporous carbon nanosphere doped with a large amount
of single-atom Zn can effectively adsorb LiPSs and catalyze
their conversion efficiently, thus effectively suppressing LiPS
shuttle effect (Figure 3d).

The above results indicate that anionic Bio-MOF-100 can
effectively induce the uniform and fast transport of lithium
ions, thus effectively inhibiting lithium dendrite growth even at
a high current density. Meanwhile, its derived ZnENC can
catalyze LiPS conversion quickly and improve the reaction
kinetics. Therefore, these two materials were coated on both
sides of the Celgard-2400 separator to prepare the SAZ-AF
Janus separator (Figure S24) and applied in a Li—S battery to
achieve the effective synergistic inhibition of lithium dendrite
and shuttle effect.

The superiority of the SAZ-AF Janus separator in Li—S
batteries was tested by assembling a series of Li—S cells with

various separators and evaluating their electrochemical
performance. Figure 4a displays the cycling performance of
Li—S cells with various separators at a 1 C rate and 1.5 mg
cm™? sulfur loading. Among them, the SAZ-AF Janus separator
cell shows the highest initial specific capacity of 1350 mAh g™*,
which is extremely higher than those of the SAZ-NF Janus
separator cell (830.1 mAh g™'), ZnENC/Celgard cell (702.5
mAh g7'), and Bio-MOF-100/Celgard cell (405.7 mAh g™*),
respectively. Meanwhile, the SAZ-AF Janus separator Li—S cell
could retain the specific capacity of 915.1 mAh g~" after 200
cycles, obviously higher than the specific capacity of cells with
single coatings to protect the anode or the cathode alone.
Figure 4b shows the rate performance of cells assembled with
various separators. Among them, the cell with the SAZ-AF
Janus separator demonstrates excellent rate performance, with
specific capacities of 1651.6, 1209.6, 1092.1, 920.7, 833.5,
707.6, and 701.6 mAh g~ at 0.1, 0.5, 1, 2, 3, 4, and S C,
respectively. When the current changes from 5 to 0.1 C, the
specific capacity can still recover to 1383.9 mAh g™, which is
far higher than those of the cells with other separators. Among
them, the ZnENC/Celgard separator failed to protect the
lithium anode, making it unable to withstand the cycle under
the high current density, while the Bio-MOF-100/Celgard
separator failed to suppress the shuttle effect, resulting in a
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low-rate performance. However, due to the high catalytic
performance of ZnENC coating and effective inhibition of
lithium dendrite growth by Bio-MOF-100 coating, the cell with
the SAZ-AF Janus separator has an excellent rate performance,
with a clear charging and discharging platform being still visible
at 5 C, as shown in Figure S29. Besides, for Janus separators,
the cells with anionic framework coating present much better
performance compared with the neutral framework coating for
lithium metal anode. The effects of SAZ-AF Janus separator in
suppressing LiPS shuttle effect and protecting lithium anode
were further verified by disassembling the cells with different
separators operated at 1 C after 100 cycles (Figure S33). The
results further confirmed the effectiveness of the single-atomic
Zn and anionic framework as a Janus separator coating in
protecting lithium anode and inhibiting shuttle effect.

Furthermore, the long-cycle stability of the cells at a high
current density was tested. In Figure 4c, it was shown that,
despite a reasonable discharge capacity of the cell with
ZnENC/Celgard in the first cycle, the lithium anode cannot
withstand a long cycle at a large current, causing lithium
dendrites to puncture the separator and the specific capacity of
the cell to decrease fast with a 0.1% capacity decay per cycle
and only 339 mAh g™ after 500 cycles. For the cell with Bio-
MOF-100/Celgard, the coating of MOF could inhibit lithium
dendrite growth, thus greatly increasing the cycle life to more
than 900 cycles. However, it cannot effectively catalyze the
conversion of lithium polysulfides, making the specific capacity
far lower than the theoretical specific capacity. After 977 cycles,
the specific capacity was only 120.9 mAh g~". The application
of Janus separator in the neutral framework of ZIF-8 as the
coating facing lithium anode still failed to improve the cell
performance. Only the Li—S cell with a Janus separator based
on single-atom zinc and anionic framework coating displays an
excellent performance with an initial specific capacity of 943.5
mAh ¢! at 2 C. Even after 1000 cycles, a specific capacity of
424.3 mAh g™ could be still maintained with 0.05% capacity
decay per cycle. Even in the case of higher sulfur loadings of 3,
5, or 8 mg cm™?, the SAZ-AF Janus separator could still play an
effective function, with area capacities of 3.6, 5.6, and 6.8 mAh
cm™?, respectively (Figure S34). Moreover, even at 12.9 mA
cm™ current density and 4 mg/cm’ sulfur loading, the cell
with the SAZ-AF Janus separator showed an excellent
performance of 694.8 mAh g™' initial capacity, which can be
still maintained at 564.7 mAh g™" after 100 cycles (Figure 4d).
Compared with the reported separators based on single-atom
catalyst coating or other Janus separators, our SAZ-AF Janus
separator displays better performance (Figures S41—S43).

In a Li—S battery, the SAZ-AF Janus separator was shown to
effectively suppress shuttle effect and lithium dendrite growth.
Considering that the Li—SeS, battery and Li—Se battery also
face these two problems, we further used the SAZ-AF Janus
separator in these two batteries to explore its application
universality. Results show that the SAZ-AF Janus separator can
protect both cathode and anode and is suitable for Li—S, Li—
Se, and Li—SeS, batteries with a high-rate performance and a
stable long cycle for all the three types of batteries (Figures
S35—S540, Tables S2—S4).

CONCLUSION

In this study, a SAZ-AF Janus separator was prepared by using
a MOF-derived monatomic catalyst with efficient catalytic
function for LiPSs and the anionic MOF with rapid lithium-ion
conduction and efficient inhibition of lithium dendrite growth

as double-sided coating materials. The single-atomic zinc
shows superior catalytic performance to metal oxides, metal
nanoparticles, or metal carbides, and the Li—Li symmetric cell
assembled with Bio-MOF-100 coating could cycle steadily for
2800 h at 5 mA cm™> and 10 mAh cm™>, with far better
performance than those of most previously reported separator
coatings. The resulting SAZ-AF Janus separator achieved
outstanding performance in different Li—S batteries assembled
with single-atomic catalysts as separator coatings (0.05%
capacity decay rate at 2 C and 1000 cycles) and showed
superior performance in protecting lithium anode (steadily
cycling at 10 mAh cm™ for 2800 h). This report provides a
facile method for preparing the high-performance functional
separator with wide applications.

EXPERIMENTAL SECTION

Preparation of Bio-MOF-100. Briefly, adenine (0.134 g) and 4,4-
biphenyl dicarboxylic acid (BPDC) (0.48 g) were dissolved separately
in 20 mL of N,N-dimethylformamide (DMF), followed by dissolving
zincacetate (0.42 g) and polyvinyl prrrolidone (PVP, 2 g) in 40 mL of
DMEF. After being completely dissolved by ultrasound for 10 min, the
above solutions were supplemented with 20 mL of DMF, 4 mL of
methanol, and 2 mL of deionized water, followed by stirring at room
temperature for 18 h, centrifugation to collect the precipitate, and
drying to obtain a white powder as Bio-MOF-100.

Fabrication of ZnENC, Bio-MOF-100-600, and Bio-MOF-100-
700. Briefly, ZnENC, a black powder, was prepared by carbonizing
Bio-MOEF-100 for 8 h under an argon environment at 800 and 5 °C/
min, and the same method was used to prepare Bio-MOF-100—600
and Bio-MOEF-100—700 by replacing 800 °C with 600 and 700 °C,
respectively.

Fabrication of Zn/Co-Bio-MOF-100, Zn/Fe-Bio-MOF-100,
and Zn/Ni-Bio-MOF-100. Briefly, BPDC (0.48 g) and adenine
(0.134 g) were dissolved separately in 20 mL of DMF, followed by
dissolving cobalt acetate (0.028 g), polyvinyl prrrolidone (PVP, 2 g),
and zinc acetate (0.39 g) separately in 40 mL of DMF. After being
completely dissolved by ultrasound for 10 min, the above solutions
were supplemented with 20 mL of DMF, 4 mL of methanol, and 2 mL
of deionized water, followed by stirring at room temperature for 18 h,
centrifugation to collect the precipitate, and drying to obtain a pink
powder as Zn/Co-Bio-MOF-100. As described above, Zn/Fe-Bio-
MOEF-100 and Zn/Ni-Bio-MOF-100 were prepared by replacing
cobalt acetate with ferric chloride or nickel acetate, respectively.

Preparation of SAZ-AF Janus Separator, SAZ-NF Janus
Separator, ZnENC, Bio-MOF-100, Bio-MOF-100-Derived Co,
Fe;C, NizZnC,,/Ni, ZnO, and Super-P (SP) Coated Separators.
For the ZnENC coated separator (ZnENC/Celgard), ZnENC, Super
P, and poly(vinylidene fluoride) (PVDF) were mixed together at a
weight ratio of 6:2:2 followed by adding a suitable amount of N-
methyl pyrrolidone (NMP), stirring, and coating the obtained
homogeneous slurry uniformly on one side of Celgard-2400 separator
by using a doctor-blade coating process. After drying in a vacuum
oven at 60 °C for 12 h, the obtained ZnENC coated separator was cut
into 19 mm diameter discs. The same method was used to prepare
Bio-MOF-100, Bio-MOF-100-derived Co, Fe;C, Ni;ZnC,,/Ni, ZnO,
and SP coated separators, named as Bio-MOF-100/Celgard, Co/
Celgard, Fe;C/Celgard, Ni;ZnC,,/Ni/Celgard, ZnO/Celgard, and
SP/Celgard separators.

The SAZ-NF Janus separator was prepared by coating the slurry of
single-atom zinc (ZnENC) and ZIF-8 with a neutral framework on
each side of the Celgard-2400 separator.

The SAZ-AF Janus separator was prepared by coating the slurry of
single-atom zinc (ZnENC) and Bio-MOF-100 with an anionic
framework on each side of the Celgard-2400 separator, with the
weight of the Janus coating materials adjusted to ~0.1 mg/cm? which
will not produce much impact on the overall energy density of the
battery.
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