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Abstract

The semi-hydrogenation of alkyne to form Z-olefins with high conversion and
high selectivity is still a huge challenge in the chemical industry. Moreover,
flammable and explosive hydrogen as the common hydrogen source of this
reaction increases the cost and danger of industrial production. Herein, we
connect the photocatalytic hydrogen evolution reaction and the semi-
hydrogenation reaction of alkynes in series and successfully realize the high
selective production of Z-alkenes using low-cost, safe, and green water as the
proton source. Before the cascade reaction, a series of isomorphic
metal-organic cage catalysts (Co,Zng_,Lg, x=0, 3, 4, 5, and 8) are designed
and synthesized to improve the yield of the photocatalytic hydrogen
production. Among them, CosZn;Lg shows the highest photocatalytic activity,
with a H, generation rate of 8.81 mmol g_1 h™'. Then, CosZn;L is further
applied in the above tandem reaction to efficiently reduce alkynes to Z-alkenes
under ambient conditions, which can reach high conversion of >98% and high
selectivity of >99%, and maintain original catalytic activity after multiple
cycles. This “one-pot” tandem reaction can achieve a highly selective and safe
stepwise conversion from water into hydrogen into Z-olefins under mild
reaction conditions.

KEYWORDS
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adsorption capacity of C=C and C=C on active metal sites
is difficult to distinguish,® which makes it difficult to

The selective hydrogenation of alkynes to produce
alkenes is an important basic reaction for the synthesis
of fine chemicals, polymer materials, drugs, and fra-
grances.' > However, in the process of alkyne hydrogen-
ation, there are still two challenges. One is that the

avoid overhydrogenation to generate alkanes.” The other
is that between the E and Z isomers of alkenes, the
synthesis of Z-olefins is more important because it is
widely present as a building block in many biologically
and pharmaceutically active compounds.®® However, it
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is still very difficult to achieve the goal of controllable
synthesis of single Z-alkenes owing to their relative
thermodynamic instability.'°** Currently, Lindlar cata-
lysts (Pd/CaCO; treated with Pb salts)'® are commonly
used in the industry to catalyze the semi-hydrogenation
of alkynes to synthesize Z-olefins. However, this method
requires the use of toxic Pb, and produces E-alkene and
alkane by-products that reduce the selectivity and yield
of Z-alkenes.'* Therefore, there is an urgent need to
develop more efficient and inexpensive catalysts for the
highly selective synthesis of Z-alkenes from alkyne semi-
hydrogenation.

In addition to the above considerations, a common
source of reactant hydrogen for the operation of alkyne
semi-hydrogenation is high-pressure hydrogen.'>'® To
ensure the safety of the reaction, investment in equip-
ment related to hydrogen transportation and use is
essential, but this will significantly increase the cost of
the reaction.’® To solve this problem, researchers have
attempted to use some hydrogen-rich chemicals (e.g.,
formic acid®®*' or ammonia borane®>*?) as the hydrogen
source, in situ catalytic release of hydrogen or hydrogen
radicals, and then alkyne hydrogenation to reduce the
potential hazards of hydrogen usage. However, these
chemical feedstocks still have low toxicity and corrosive-
ness, and the decomposition process is energy-intensive
(e.g., heating) and yields undesirable products. As we all
know, water is the most abundant proton source on
earth, nontoxic, and cheap, and the water-splitting
products (H, and O,) are also green. If water is used as
the main proton source in the alkyne semi-
hydrogenation reaction, that is, the hydrogen evolution
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Selective Photosynthesis of Z-olefins
through Expeditious Cascade Reactions

reaction and the alkyne semi-hydrogenation reaction are
effectively connected in series, it will effectively reduce
the cost and toxicity of the reaction and avoid the danger
of using hydrogen directly. However, since water
molecules are relatively stable at room temperature and
pressure (AG® = 4237 kJ/mol), it is difficult to activate
and decompose to produce hydrogen.** So far, few
catalysts have been reported to further reduce the
unsaturated bond (C=C, C=0, N=0) by using the H
species product generated by green water.”>*’ In
particular, the literature of the photocatalytic semi-
hydrogenation reaction of alkynes reduced by proton
from H,O is scarce.?®°

In this work, we reported the “one-pot” tandem
conversion of a photocatalytic hydrogen evolution
reaction and an alkyne semi-hydrogenation reaction,
which achieved high conversion and selectivity of
alkynes to Z-alkenes (Scheme 1). In this tandem reaction,
we designed and synthesized a stable, cheap, and
efficient metal-organic cage catalyst system, Co,Zng_
W(OH),4L¢(H,0), (Co,Zng_,L¢, x=0, 3, 4, 5, and 8,
H,L=N, N’-(propane-1,3-diyl) bis (1-(1H-imidazol-4-yl)
methanimine) with different Co/Zn metal ratios, which
could catalyze hydrogen production and semi-
hydrogenation of the alkyne reaction simultaneously.
Among them, CosZn;Ls had the best photocatalytic
hydrogen evolution activity, and the H, production rate
was as high as 8.81 mmolg™'h™'. The excellent photo-
catalytic activity might be attributed to the bimetallic
synergistic effect. It was worth noting that under the
catalysis of non-noble metal-based CosZn;Lg, we success-
fully achieved the alkyne semi-hydrogenation reaction

Metal-Organic Cages
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SCHEME 1 One-pot tandem conversion of the photocatalytic hydrogen evolution reaction and the alkyne semi-hydrogenation reaction

using metal-organic cages catalysts.
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with water as the proton donor. At normal temperature
and pressure, alkynes could be converted into Z-alkenes
with very high conversion (>98%) and selectivity (>99%).
This work shows that photocatalytic hydrogen production
and alkyne semi-hydrogenation are connected in series,
and the hydrogenation reaction using water as the proton
source is successfully realized, avoiding the danger of
directly using the hydrogen reactant, reducing the reaction
cost, and obtaining the pure product of Z-alkenes, which
has excellent potential for industrial application. In
addition, through this work, we also found that photo-
stimulation can not only effectively trigger the occurrence
of this tandem reaction but also greatly improve the
selectivity of Z-alkene products.

2 | EXPERIMENTAL SECTION

2.1 | Synthesis of Co,Zng_,L¢ (x=0, 3, 4,
5, and 8)

H,L (0.04 mmol) and CoCl,-6H,O (0.08 mmol) were
dissolved in a mixture solution of dimethylformamide
(DMF) (4mL), H,O (I1mL), and MeOH (1mL) by
ultrasonication, and then a drop of HNO; was added.
Subsequently, the mixture solution was transferred to a
10mL glass vial for 72h at 100°C under autogenous
pressure. After cooling down to room temperature, dark
red cubic-shaped crystals (CogLs) were collected by
filtration and washed with DMF and MeOH (Yield:
78%). CoyZng_,Le (x =0, 3, 4, and 5) was prepared using
a similar method, except for the use of metal salt,
detailed in the Supporting Information.

2.2 | Photocatalytic H, evolution
experiments

Photocatalytic H, production experiments were per-
formed in a sealed 50 mL Pyrex flask. A 300 W Xe lamp
with a wavelength range from 300 to 1100 nm was used
as the light source to trigger the photocatalytic reaction.
The reaction temperature was controlled at 25°C by
using cooling water circulation. In a typical experiment,
the catalyst (5mg) was added to the mixed solution,
which consisted of MeCN/H,0O (30 mL, vol/vol = 14:1),
ascorbic acid (0.1 mol/L) as an electron donor, and [Ru
(bpy):]Cl,-6H,O (bpy = 2’,2-bipyridine, 10mg) as a
photosensitizer. Before irradiation, the system was
degassed with Ar to remove dissolved O, for 30 min. To
detect the formation of hydrogen from the reaction
mixture, 500 uL from the middle of the reactor was
taken out with a syringe and injected into a gas
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chromatography (GC) with a thermal conductivity
detector (TCD) using nitrogen as the carrier gas and
the reference gas. All glassware was carefully rinsed with
ultrapure water before usage. Photocatalytic stability
tests were performed using the same processing
parameters.

2.3 | Photocatalytic tandem reaction
experiments

For a better comparison, all organic measurements were
carried out under equivalent experimental conditions. To
achieve high gas density in the reaction volume, the
relatively small volume of the chamber reactor (25 mL
Schlenk tube) was selected. In a typical procedure, 5 mg
of catalysts, 0.1 mmol of alkynes, 2mL of ultrapure
water, 8 mL of MeCN, 0.1 mol/L of ascorbic acid, and
10 mg of [Ru(bpy);]CL,-6H,0 were first added; then, the
reactor was sealed and purged with Ar for 30min.
Afterwards, the reactor was irradiated by a 300 W Xe
lamp with a wavelength range from 300 to 1100 nm at
25°C. The H, produced was determined by GC using a
thermal conductivity detector (TCD) detector. The
hydrogenation products were detected and quantified
by gas chromatography-mass spectrometry (GC-MS) and
nuclear magnetic resonance (NMR) analyses after
purification by column chromatography on a silica gel.

3 | RESULTS AND DISCUSSION

3.1 | Structure and characterization

It is well known that crystalline coordination compounds
have well-defined crystal structures, and specific struc-
tures can be designed by functionalizing organic linkers
or modulating components.>’ > Metal-organic cages
(MOCs), as one of the crystalline complexes, are discrete
molecules that self-assemble from organic linkers and
metal ions or clusters.*®*’ MOCs contain independent
cavities that can act as nanoreactors with potential
applications in various fields such as adsorption separa-
tion,*®* host-guest chemistry,’*** and catalysis.***
Herein, we designed and synthesized a series of
isostructural monometallic-organic cages (ZngLs and
CogL) and bimetallic-organic cages (Co,Zng_,Lg, x = 3,
4, and 5; Figure 1). The crystal structure is described by
taking CogL¢ as an example. Single-crystal X-ray diffrac-
tion analysis reveals that CogLe crystallizes in the
rhombohedral space group R-3 with an asymmetric unit
consisting of two cobalt ions, one ligand, one water
molecule, and one hydroxide ion (Figure S2). CogL¢ has
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FIGURE 1 Crystal structures of (A) CogLs, (B) CosZn;Lg, and (C) ZngLs. Schematic diagram of the crystal structure of (D) CogLs,
(E) CosZnsLg, and (F) ZngLe. (G) Three-dimensional (3D) supramolecular stacking diagram of CogLg and (H) schematic diagram of the 3D

stacking diagram of CogLs.

an 8-nucleus distorted cubic structure and contains two
types of geometrically independent cobalt ions (Col and
Co2). Col is octahedral coordinated, which is chelated by
four N atoms from one ligand and binds one imidazole N
atom from another ligand and a OH™ or a H,O (Figure 4).
Co2 is a tetrahedral coordination center that coordinates
with three ligands by imidazolium N atoms and a OH~
(Figure S3B). The four N atoms in the center of each
ligand chelate a Col ion, and the two imidazole N atoms
of the ligand are linked to a pair of Col and Co2 ions.
Through the above connection method, six Col ions, two
Co2 ions, and six ligands form a cubic cage, and the
cavity diameter of the cage is about 6.13 A. Interaction of
adjacent cages with each other occurs by hydrogen

bonds, eventually forming a three-dimensional supra-
molecular compound (Figure S4). Remarkably, by simply
replacing Co ions with Zn ions of similar radii in
the synthesis, we can also construct isostructural
ZngLs. Moreover, a series of bimetallic-organic cages,
Co,Zng_,Ls (x=3, 4, and 5), can be synthesized by
systematically tuning the Co/Zn ion ratio.

As shown in Figure S5, the powder X-ray diffraction
(PXRD) patterns of Co,Zng_,Ls (x=0, 3, 4, 5, and 8)
were very consistent with the simulated peaks, which
proved their high crystallinity and purity, and further
demonstrated that they had a similar structure. In
addition, all of them shared similar Fourier-transform
infrared peaks (Figure S6), which indicated that they
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were isostructural. In detail, the peaks at around 2931,
2848, 1670, 1628, and 1112 cm ™! were the antisymmetric
and symmetric stretching vibration peaks of CH,, the
stretching vibration peak of C=C, the C=N absorbance
band, and the stretching vibration peak of C-N. Through
an optical microscope (Figure S7A-E), we could clearly
observe that metal-organic cages (Co,Zng_,Le, X =0, 3,
4, 5, and 8) were cubic crystals, but their crystal colors
changed with the ratio of Co/Zn in the crystal lattice. As
the Co/Zn ratio changed regularly from 0:8, 3:5, 4:4, 5:3
to 8:0, the color of the crystals also deepened signifi-
cantly, from colorless to brown to dark red. Their
morphologies and sizes were further characterized by
scanning  electron  microscopy (SEM) images
(Figure S7F-0). Obviously, Co,Zng_,L¢ (x=0, 3, 4, 5,
and 8) were regular cubic single crystals of uniform size
with an average side length of 10-20 um. The SEM-
energy-dispersive X-ray spectroscopy (EDS) elemental
mapping images of Co,Zng_,Le (x=0, 3, 4, 5, and 8)
revealed a uniform distribution of Co or Zn elements in
the crystals, demonstrating the even doping of Co and Zn
in the crystals (Figure S7P-Y). The basic composition and
the molar ratios of Co/Zn of these cages could be further
evaluated by EDS. It was observed from the EDS spectra
(Figures S8-S12) that ZngL¢ consisted of Zn, C, N, and O,
Co,Zng_,Lg (x=3, 4, and 5) consisted of Zn, Co, C, N,
and O, and CogLg consisted of Co, C, N, and O. Besides,
according to EDS, the atomic ratios of Co and Zn for
Co,Zng_,Ls (x=3, 4, and 5) were 1:1.70, 1:1.04, and
1:0.69, respectively (Table S4). Inductively coupled
plasma emission spectroscopy showed that the stoichi-
ometries of Co/Zn in Co,Zng_,L¢ (x =3, 4, and 5) were
1:1.78, 1:0.97, and 1:0.55, respectively (Table S5), which
corresponds to the EDS results.

To determine the positional distribution of Co and Zn
ions in the bimetallic-organic cage structure, we
simulated the energy of Co,ZnL4 by density functional
theory (DFT) calculations. Co,ZnLg had the possibility of
two metal distributions, that is, Zn substituted for Col or
Co2. The calculation results showed that the structural
energy of four-coordinated Zn (the Co2 site was
substituted by Zn; Figure S13B) was 0.96 eV lower than
that of six-coordinated Zn (the Col site was substituted
by Zn; Figure S13A), and the structure was more stable.
Therefore, Zn preferentially occupied four-coordinated
sites in bimetallic—organic cages.

Meanwhile, thermogravimetric analyses showed that the
structures of Co,Zng_,Ls were stable until about 300°C
(Figures S14-S18). Elements present in Co,Zng ,Ls and
their corresponding valence states were characterized by X-
ray photoelectron spectroscopy (XPS). The XPS survey
patterns (Figure S19) proved that Co,Zng_,L¢ all consisted
of C, N, O. In addition, Co,Zng_,Ls (x=0, 3, 4, and 5)
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consisted of Zn and the content of Zn gradually decreased,
while Co,Zng_,Lg (x=13, 4, 5, and 8) consisted of Co and the
content of Co gradually increased. As shown in Figure S20A,
for ZngLg, the XPS Zn 2p;,, peak located at 1021.23 eV and
the 2p,,, peak located at 1044.31 eV, indicating that Zn only
had an oxidation state of +2. Figure S21D shows that
binding energies at 781.44 eV (Co 2ps/,) and 796.58 eV (Co
2py,,) belonged to the Co(II) ion in CogLg. Similarly, all Zn
and Co ions of CoZng_,Le (x=3, 4, and 5) were divalent
(Figures S20 and S21).

Because the crystals of CoyZng_,L¢ (x=0, 3, 4, 5, and
8) had different shades of colors, solid-state ultraviolet-
visible-near-infrared diffuse reflectance spectroscopy
(UV/Vis-NIR DRS) was carried out to detect their light
absorption capacity. Figure 2A shows that colorless
ZngLg had strong light absorption in the UV region at
around 310 nm, but only weak absorption in the visible
light region and the infrared light region. By contrast,
dark red CogLs showed a broad UV/Vis-NIR absorption
region from 300 to 1500nm. Therefore, brown
Co,Zng_,L¢ (x =13, 4, and 5) obtained by doping Co into
ZngLs enhanced the absorbance of visible and infrared
light, which was slightly weaker than CogL¢. This means
that the electrons of Co,Zng_,Le (x =3, 4, 5, and 8) with
Co were more easily excited under visible light and
infrared light irradiation those that of ZngL¢ only with
Zn. These better light harvesting abilities were due to
charge transfer between the ligand and the metal ion.
The optical band gap (E,) values of Co,Zng_,Lg (x=0, 3,
4, 5, and 8) were calculated to be 3.06 eV (ZngLg), 2.23 eV
(Co3ZnsLg), 1.91eV (CosZnylg), 1.89eV (CosZnzLy),
and 1.87eV (CogLg) by the Kubelka-Munk function
(Figures S22-S26), unveiling their potential for use as
semiconducting catalysts. Mott-Schottky measurements
were performed to determine the lowest unoccupied
molecular orbital (LUMO) position of these cages. The
final LUMO positions of Co,Zng_,Ls (x=0, 3, 4, 5, and
8) were estimated to be —1.25, —0.67, —0.65, —0.60, and
—0.71V vs. normal hydrogen electrode (NHE, pH 7),
respectively (Figures S27-S31). By performing UV/Vis-
NIR DRS associated with Mott-Schottky measurements,
the highest occupied molecular orbital (HOMO) posi-
tions of Co,Zng_,Lg (x=0, 3, 4, 5, and 8) were calculated
to be 1.81, 1.56, 1.26, 1.29, and 1.16 V (vs. NHE, pH 7),
respectively (Figure 2B). To verify the accuracy of above
results, the HOMO positions of Co,Zng_,L¢ (x=0, 3, 4,
5, and 8) were determined by UV photoelectron
spectroscopy (Figures S32-S36), from which the HOMO
positions were calculated to be —6.65, —6.43, —6.11,
—6.15, and —6.02 eV (vs. vacuum level, E,), respectively.
Simultaneously, the HOMO energy levels of Co,Zng_,Ls
(x=0, 3,4, 5, and 8) were calculated to be 1.80, 1.58, 1.26,
1.30, and 1.17V (vs. NHE, pH 7), respectively, which
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FIGURE 2 (A) UV/Vis spectra of CoyZng_,Ls (x=0, 3, 4, 5, and 8). (B) Band structure for Co,Zng_,L¢. (C) H, yield of Co,Zng_,Lg.
(D) H, evolution rate of CoyZng_,L¢. (E) EIS Nyquist plots of Co,Zng_,Le. (F) Transient photocurrent responses of Co,Zng_xLs.

were in agreement with the values obtained from
Mott-Schottky measurements and UV/Vis-NIR DRS.
Obviously, as shown in Figure 2B, the LUMO positions
of these cages were more negative than the redox
potential of H,/H,O (4.85eV vs. E,, 0V vs. NHE, pH
7). Therefore, theoretically, these cages could serve as
efficient catalysts for hydrogen production due to the
matching of their band structure.

3.2 | Photocatalytic hydrogen evolution
performance

Based on the broad absorption range, enhanced charge-
transfer rate, and more negative LUMO  sites,
Co,Zng_,L¢ (x=0, 3, 4, 5, and 8) has potential for use
as an excellent catalyst for photocatalytic hydrogen
evolution. To test the photocatalytic hydrogen evolution
performances of these cages, the photocatalytic reaction
was carried out in an Ar-saturated MeCN/H,O solvent
with ascorbic acid as a sacrificial agent and [Ru(bpy)s]
Cl,-6H,O (bpy =2’,2-bipyridine) as a photosensitizer
under UV/Vis-NIR light. At first, monometallic-organic
cages (ZngLg and CogLs) were used as catalysts.
Figure 2C,D shows that the hydrogen evolution rate
(4.39 mmol g ' h™") of CogLg was slightly higher than
that of ZngLg (0.12mmolg 'h™") under the same

conditions, probably because Co sites of CogLg could
act as both catalytic sites and cocatalytic sites, which was
more active than Zn. After Co/Zn doping, the catalytic
performance of Co,Zng_,L¢ (x = 3, 4, and 5) significantly
improved, and the H, generation rates were 5.32, 6.64,
and 8.81mmolg 'h™!, respectively. Meanwhile, the
turnover number (TON) was one of the most important
indexes for evaluation of the catalytic activity. As listed in
Table S6, the TONs of Co,Zng_,Le (x=0, 3, 4, 5, and 8)
were 0.70, 32.13, 39.97, 52.87, and 26.08, respectively. It is
reported that Co-based materials are commonly used
cocatalysts in photocatalytic reactions.*>*” Therefore, the
reason for the better performance of Co,Zng_,Lg (X =3,
4, and 5) may also be that the catalytic sites (Zn sites and
Co sites) and the cocatalytic sites (Co sites) are
concentrated on the same cage, and the two types of
sites are connected by ligands to form electron transport
channels, which enhance their synergistic effect. The
catalytic performance of bimetallic cages with any Co/Zn
ratio is much higher than that of monometallic cages
(ZngLg and CogLg), fully demonstrating that the
bimetallic synergistic effect can greatly improve the
catalytic performance. Notably, the H, generation rate of
the best-performing CosZn;Lg was 73.42 times and 2.01
times higher than that of ZngL¢ and CogLg, respectively.
Taking CosZn;Lg as an example, we evaluated the
influence of different masses of catalysts on the H, yield
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and the production rate of the hydrogen evolution
reaction. As shown in Figure S38, it could be concluded
that as the mass increased, the H, yield gradually
increased, but the production rate decreased. Consider-
ing the actual experimental conditions, the reason for
this result was not only linked to the light scattering
effect but also the effective contact area between the
catalyst and light irradiation.

The charge separation efficiency was one of the
important factors affecting the photocatalytic per-
formance. To explore the role of bimetallic synergy in
charge separation, we carried out electrochemical
impedance spectroscopy (EIS) and transient short-
circuit photocurrent response tests of Co,Zng_,Lg
(x=0, 3, 4, 5, and 8). Compared with monometallic
catalysts, the synergistic effect of Zn and Co doping
may reduce the impedance of materials. In fact,
Co,Zng_,Ls (x=3, 4, and 5) showed a smaller
Nyquist curve semicircle diameter compared to
ZngLg and CogLg in the EIS measurements, implying
that the order of charge transport rates of cages
was CosZn;Lg > Co4ZnyLg > CosZnsLg > Coglg > ZngLg
(Figure 2E). This indicated that lower interfacial charge-
transfer resistance and higher electronic conductivity
could be obtained by uniformly doping Zn and Co in
the cage. As a proof of concept, transient short-circuit
photocurrent response tests (Figure 2F) were performed to
explore the efficiency of photoinduced electron transfer.
When the light was turned on, the photocurrent was
rapidly generated and then remained stable. The photo-
current decayed rapidly when the light was turned off,
indicating that all cages had strong photocurrent
responses. It was worth noting that the transient
photocurrent response intensities of CosZnzlLg were
1.23, 1.37, 2.09, and 15.65 times higher than those of
Co,Zn,Lg, CosZnsLg, Coglg, and Znglg, respectively.
Thus, the Co/Zn synergy enhanced the separation
efficiency of photogenerated electrons and holes, pre-
vented electron-hole recombination, and increased the
surface photogenerated electron density of the catalyst,
thereby dynamically accelerating the rate of the electron
reduction reaction and hydrogen production.

In addition, the change of photocatalytic activity
might be related to the electronic state of the metal. As
shown in the XPS Co 2p spectra (Figure S21), compared
with CogLg, the binding energies for Co 2p in
bimetal-organic cages decreased, and the order of the
binding energy for Co 2p was CogLg> Co3Zns
L¢> Co4Zn,Lg > CosZn;Lg. Correspondingly, the bind-
ing energies of Zn 2p in the bimetallic-organic cages
increased compared to ZngLs, and the degree of
migration  was CosZn;Lg > CoyZnyLg > CozZnsLg
(Figure S20). This indicated that after Co/Zn doping,
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some of the electrons of Zn were transferred to Co,
resulting in an increase in the electron density of Co,
improving the reducibility of Co. In a word, Co/Zn
doping regulated the electronic structure of Co, improved
its reducibility, and enhanced its catalytic activity,
thereby increasing the hydrogen evolution rate.

To fully evaluate the catalytic activity of CosZnsLg,
we performed a series of control experiments. H, was not
detected by GC when the reaction was run in the absence
of light, ascorbic acid, [Ru(bpy);]Cl,-6H,0O, or H,O
(Table S8, entries 1-4). When the tests were carried out
under no MeCN or CosZnsLg, only trace amounts of
hydrogen could be detected (Table S8, entries 5-6). If any
one factor was removed, the catalytic performance
decreased sharply, which proved that the above factors
were indispensable in the photocatalytic process.

The durability of the catalyst is an important
indicator when evaluating the quality of a catalyst.
Taking the superior performance of CosZn;Ls as an
example, the production of H, was almost unchanged
after three cycles of experiments (Figure S39). PXRD
results of Co,Zng_,L¢ (x=0, 3, 4, 5, and 8) before and
after the reaction were consistent, proving that the
catalysts remained stable during the reaction
(Figure S40). The metal ion contents of the solutions
after the reactions were detected by inductively coupled
plasma atomic emission spectroscopy (Table S9), and the
results showed that zinc and cobalt ions were not
detected, which further confirmed the stability of the
heterogeneous catalysts in the reaction system.

3.3 | Mechanism of photocatalytic
hydrogen evolution

To determine the structure—property relationship, DFT
calculations were performed based on explicit crystal
structure models. We compared the free-energy changes
of the two catalytically active sites (tetrahedral sites and
octahedral sites) in the monometallic-organic cages
(CogLg¢ and ZngLg) for photocatalytic hydrogen evolu-
tion (Figure 3A). In the hydrogen evolution reaction,
the rate-determining step was the formation of *H
(Symbol * represents the active site for adsorption and
reaction). For CogLg, the octahedral Co site had a free-
energy activation barrier (AG) of —0.20 eV, which was
much smaller than that of the tetrahedral Co site
(AG =0.59eV). Meanwhile, the AG of the tetrahedral
Zn site (2.57eV) was also larger than that of the
octahedral Zn site (2.37¢eV) in ZngLg. Therefore, the
main catalytically active sites in monometallic—organic
cages were the octahedral coordinated metal sites. At
the same time, the free-energy barrier of the Zn site was
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much higher than that of the Co site whether it was a
six-coordination site or a four-coordination site. Based
on the above information, in the bimetallic-organic
cage (Co,Zng_,Lg, x=3, 4, and 5), the octahedral Co
sites were the main catalytic sites for photocatalytic
hydrogen evolution. Taking CosZn;L¢ as a representa-
tive of bimetallic-organic cages, the octahedral Co site
of CosZnzLg had the lowest free-energy activation
barrier of —0.10eV, which was consistent with the
experimental results showing that its catalytic perform-
ance

for hydrogen evolution was better than that of
monometallic-organic cages.

To study the adsorption capacity of catalysts and
reaction intermediates (*H), the density of states on the
d-band of Co active sites in Co,Zng_,Lg (x=3, 4, 5, and
8) catalysts were calculated and are shown in Figure 3B.
The Fermi level in the calculation was set as 0 eV. When
the Co/Zn atomic ratios of bimetallic-organic cages were
3:5, 4:4, and 5:3, the d-band centers were —5.07, —4.28,
and —3.49 eV, respectively, which indicated that the d-
band states shifted towards the Fermi energy level (Eg).
In general, the closer the d-band center of the transition
metal to the Fermi level, the higher the catalytic
activity,*® resulting in stronger adsorption of metal active
sites to *H. Hence, the order of the catalytic activity
of bimetallic-organic cages was CosZnz;Lg> Coy
Zn,L¢> CozZnsLg, which was in agreement with the
experimental results. The d-band center of CogLg
(=1.75eV) was closer to the Fermi level than that of
bimetallic-organic cages, but the catalytic performance
was indeed lower than that of Co,Zng_,L¢ (x =3, 4, and
5), probably because the Co active sites in CogLg were too

strongly adsorbed to *H, which was not conducive to H,
release.

To study the electron transport mode during photo-
catalytic hydrogen evolution, an UV-Vis absorption
spectrum experiment of [Ru(bpy):;]Cl, (PS) was per-
formed (Figure S41). In the absence of a catalyst, PS was
rapidly bleached after illumination because the PS™" state
generated during photogenerated electron transfer was
unstable. Obviously, the bleaching of PS became slower
under the same illumination time after adding the
catalyst, indicating that the photogenerated electrons
were transferred from PS to the catalyst, extending the PS
lifetime. Based on the above considerations, the possible
mechanism of hydrogen evolution is shown in
Figure S42. First, the OH™ on the six-coordinated Co™!
site scattered to generate Co™ with an active site, which
was reduced to Co' by the photogenerated electrons
transferred from PS. Co' combined with a proton from
H,0 to form Co"™-H, and gained another proton in
solution to release H,, returning to the original Co™.

3.4 | Photocatalytic tandem reaction
performance

For hydrogenation reduction reactions, the storage and
transportation of H, are costly and involve certain risks.*’
Hence, we hope to utilize the proton from water for the
one-pot tandem catalytic reaction for further synthesis of
valuable organics. This method can not only efficiently
and directly utilize the in situ-generated H species,
avoiding the dangers of using hydrogen, but also obtain
high-value organic chemical pure products. This may
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represent an avenue for photocatalytic hydrogen produc-
tion for practical applications in industry in the future.
The one-pot method is more conducive to the transfer of
protons from water molecules to organic substrates, but
it is more difficult to achieve the conditions of hydrogen
production and organic reactions at the same time.*
Based on the above considerations, we chose to carry out
the hydrogen evolution and semi-hydrogenation of
alkyne reactions in series. To explore the best reaction
conditions, several control experiments using diphenyla-
cetylene as a model substrate and CosZnsLg as a
hydrogen evolution catalyst were performed. Hydrogen
gas was analyzed by GC, and alkyne conversion and
alkene selectivity were determined by GC-MS.

It is well known that solvents often play a crucial
role in the conversion and selectivity of organic
reactions.”>* Hence, Figure 4B shows the influence
of solvents on the photocatalytic tandem reaction.
Compared with acetonitrile, which had a certain
toxicity, we preferred to complete the reaction in pure
water. Unfortunately, the yield of active H species
under pure water conditions was too low, and
diphenylacetylene was insoluble in water, reducing
the contact of H species with diphenylacetylene, so
almost no hydrogenation product was produced
(Table S10, entry 1). Meanwhile, pure acetonitrile
could not produce H species, so diphenylacetylene did
not undergo hydrogenation reduction (Table S10,
entry 5). Because acetonitrile could improve the
solubility of diphenylacetylene, and water was
the proton source, we chose a mixed solvent of
acetonitrile and water for the tandem reaction. When
the volume ratio of MeCN/H,0O was 1:4 (Table S10,
entry 2), H, production was 8.30 umol, and a small
amount of diphenylacetylene with a conversion of 15%
was reduced to cis-stilbene (selectivity = 79%). Also, a
H, output of 8.35umol, a conversion of 80%, and a
selectivity of 91% for cis-stilbene were obtained under
the conditions of MeCN/H,0 =1:1 (Table S10, entry
3). The best mixed solvent was MeCN/H,0 = 4:1, and
12.82 umol H, was produced and further reduced
diphenylacetylene to cis-stilbene, whose yield and
selectivity were as high as 98% and 99%, respectively -
(Figure S44 and Table S10, entry 4). Owing to the
increased H species production and enhanced
substrate solubility, diphenylacetylene was almost
completely converted into cis-stilbene rather than
trans-stilbene and 1,2-diphenylethane under ambient
temperature and pressure within 3h. Among the
reported catalysts for the semi-hydrogenation of
alkynes, most of them required higher temperature
and high hydrogen pressure for efficient completion
of the reaction (Table S11). Surprisingly, using an
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one-pot method, diphenylacetylene could be directly
reduced to cis-stilbene by photocatalytically generated
active H species without additional heating and
pressure. In this way, the energy consumption and
cost of the reaction were greatly reduced, which is
beneficial for subsequent applications in industry.

The semi-hydrogenation of alkynes cannot proceed
spontaneously under ambient conditions without catalysts.
However, in this one-pot reaction, without the addition of a
specific catalyst, the alkyne realizes the semi-hydrogenation
reaction. Therefore, we investigated whether the various
components in the reaction system could catalyze the semi-
hydrogenation of alkynes. In Table S12, entries 2-4 show
that ascorbic acid, [Ru(bpy);]Cl,-6H,0, and CosZnszLg
cannot catalyze the hydrogenation reduction of diphenyla-
cetylene with an additional H, balloon under light. As a
result, we speculated that diphenylacetylene was directly and
spontaneously reduced by the H species generated by water,
rather than reacting with the final combined H,. As a proof
of concept, we performed isotope labeling control experi-
ments using D,O instead of H,O to explore the proton
source for hydrogenation, and the corresponding products
were detected by GC-MS. When H,0 was used (Figure 4D),
the m/z value of 179.1 was assigned to the fragmentation ion
cis-stilbene radical. When H,O was replaced with D0, this
signal peak shifted to 181.1, which was the same result as
that using both D,O and a H, balloon. Meanwhile, the
results of "H NMR (Figures S45-S47) and high-resolution
mass spectrometry (Figures S48-S50) were in good agree-
ment with that of GC-MS. In addition, "H NMR spectra
(Figure S51) of the liquid phase from the photocatalytic
semi-hydrogenation of diphenylacetylene further confirmed
this point. These experiments fully demonstrated that
diphenylacetylene was reduced by in situ-generated protons
from water, independent of H,.

To further investigate the reason why the product of
the semi-hydrogenation of diphenylacetylene was cis-
stilbene instead of trans-stilbene, we replaced dipheny-
lacetylene with trans-stilbene and performed experi-
ments under the same conditions. From Table S13,
entries 1-4, it is clear that trans-stilbene could not be
converted into cis-stilbene under dark conditions with or
without the addition of ascorbic acid, [Ru(bpy)s]
Cl,-6H,0, or CosZn;Le. This transformation could occur
under light with the conversion of 47% (Table S13, entry
5). However, with the addition of ascorbic acid, [Ru
(bpy):]Cl,-6H,0, or CosZnsLg, the conversion increased
slightly (Table S13, entries 6-8). Therefore, illumination
was the decisive factor for the conformational transfor-
mation. To study the effect of light on the conversion of
cis-trans isomers, we tested the changes of trans-stilbene
under different wavelength ranges of light. Interestingly,
when irradiated under UV light (Table S13, entry 9) and
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Vis light (Table S13, entry 10) for the same time, the In addition to activity and selectivity, stability is
conversions of trans-stilbene into cis-stilbene were 48% another key parameter to evaluate the performance of
and 6%, respectively. Therefore, UV light was one of the catalysts. After three runs of experiments, the conversion
key factors in the production of cis-stilbene. of diphenylacetylene was 95%, and the selectivity of
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cis-stilbene was 99%, proving that the catalytic activity of
CosZn;L¢ hardly changed (Figure 4C). In PXRD pattern
(Figure S52), the Zn 2p and Co 2p XPS spectra
(Figure S53) of CosZnsLg after the test matched that
before the test, which proved that the structure of
CosZn;Lg was stable during the catalytic process.

3.5 | Substrate scope

To verify the applicability of this tandem reaction, we have
extended the study of various substrates with different
functional groups (Figure 4E). Regardless of the substrates
with electron-donating groups (-Cl, -Br, -OCH3, and -NH,)
or electron-withdrawing groups (-CF5), the conversion rate
could reach more than 98% and the selectivity of Z-alkenes
was maintained at more than 99%. More importantly,
when the substrate was changed to 1-ethoxy-4-[2-(4-
methylphenyl)ethynyl]benzene with two different para-
substituents, the conversion rate could reach 99% and the
selectivity of Z-1-ethoxy-4-(4-methylstylyl)benzene remained
above 99%. These results demonstrated the generality and
application potential of the photocatalytic tandem reaction
of hydrogen evolution and semi-hydrogenation of alkynes.

3.6 | Mechanism of the photocatalytic
tandem reaction

The experimental results (Figures 2C and 4B) showed that
H, would be produced regardless of whether the reaction
system included diphenylacetylene or not, so the main
intermediate of the separate hydrogen evolution reaction
and the tandem reaction was the same Co™-H (the same
Step A and Step B).**>* However, there were two reaction
paths after the catalytic site absorbed *H to form Co™-H:
one was the coupling another proton in solution to generate
H, (Step C of the hydrogen evolution reaction) and the
other was the combination of *H and the carbon-carbon
triple bond of alkynes to produce intermediate R;*C=CHR,
(Step C of the tandem reaction). Taking CosZnsLg as the
catalyst model and diphenylacetylene as the substrate, DFT
calculations were carried out to understand the catalytic
mechanism of the tandem reaction. At the octahedral-
coordinated Co site, the AG for the formation of H, was
0.23 eV, while the AG for the formation of Ph*C=CHPh was
0.13 eV (Figure 5A and Table S14). Therefore, the generated
*H on the Co active sites preferentially combined with C=C
of diphenylacetylene instead of H, release. As shown in
Figure 5B, in Step C of the tandem reaction, Co-H
conducted a nucleophilic attack on a triple-bonded carbon
atom of an electrophilic alkyne via a 7 complex to form
Co™-R,C=CHR,, which further obtained a proton from
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H,O to generate Co'-R;HC=CHR, (Step D, AG =—0.12
eV). It is worth noting that the six-coordinated Co catalytic
site was at the apex of the cube cage; the entire cage had a
steric hindrance effect on the adsorbed Co™-R,C=CHR.,, so
it tended to form a configuration in which two benzene
rings were on the same side of the C=C bond away from the
cage, resulting in the high selectivity of Z-alkene. In
addition, even if a small amount of trans-stilbene was
produced, it could easily undergo trans to cis isomerization
under full spectrum (including UV light) illumination,
resulting in the final production of cis-stilbene. In a word,
the steric hindrance effect and UV light were two main
reasons why that diphenylacetylene was more likely to be
reduced to cis-stilbene.

In Step E, the AG for direct desorption of the alkene
was extremely low, being —1.58eV. Therefore, cis-
stilbene was prone to scatter from the Co catalytic site,
resulting in its inability to further hydrogenate to
produce 1,2-diphenylethane. Additionally, we monitored
the photocatalytic reaction process through 'H NMR. As
shown in Figure S54, before illumination, only dipheny-
lacetylene was present in the reaction system. As the
illumination time increased, the diphenylacetylene sig-
nals gradually decreased, while the cis-stilbene signals
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began to appear and gradually increased, without the
signals of other products. Moreover, we replaced
diphenylacetylene with cis-stilbene and performed the
reaction under the same conditions. As a result, the
product that we obtained was a mixture of cis and trans
isomers of stilbene (cis-stilbene: trans-stilbene =98%:
2%), without the production of the hydrogenation
product (1,2-diphenylethane). Therefore, both experi-
ments and calculations have proved that the Co catalytic
site cannot adsorb and activate cis-stilbene, so it will not
be further hydrogenated to produce 1,2-diphenylethane.

4 | CONCLUSION

In summary, we designed and synthesized a series of stable
MOCs-based photocatalytic hydrogen evolution catalysts, in
which CosZn;Lg showed high catalytic activity with the H,
generation rate of 8.81 mmol g~ h™". The catalytic perform-
ance was significantly improved due to the bimetallic
synergistic effect, leading to a faster electron transfer rate
and higher separation efficiency of photogenerated electrons
and holes. More importantly, we successfully photosynthe-
sized Z-olefins using water as the proton source. This
tandem reaction strategy showed very high conversion
(>98%) and selectivity (>99%), as well as application
potential for the synthesis of fine chemicals. Significantly,
this work provides a promising route for designing more
photoinduced low-cost and energy-efficient tandem
reactions to obtain high-value and selective organic
products.
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