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A B S T R A C T   

Cocatalyst assisted photocatalytic H2 generation from water under mild conditions can meet the increasing 
demand for clean and sustainable energy, but efficient and super-stable photocatalyst has rarely been achieved 
by modulating the composition and structure of cocatalyst. Herein, a fantastic cocatalyst, MoO2/Mo2C nano
particles strongly anchored in conductive carbon matrix (MoO2/Mo2C-C), was accurately synthesized by in-situ 
carbonizing strategy and adopted as an efficient and robust cocatalyst for CdS photocatalytic H2 evolution. To 
our delight, the obtained MoO2/Mo2C-C cocatalyst is extremely stable, retaining the original activity even after 
two years storage in atmospheric conditions. The optimized MoO2/Mo2C-C-CdS-0.3 (MMCC-0.3) photocatalyst, 
coupling 30 wt% MoO2/Mo2C-C with CdS, delivers a substantial H2 evolution rate of 18.43 mmol h− 1 g− 1 and 
super stability of successive 90 h testing (conducted in 15-day) without a secondary sacrificial agent supplement, 
as well as a high apparent quantum efficiency of 14.13 %. Both experimental results and DFT calculations reveal 
that the unique MoO2/Mo2C-C cocatalyst not only merited with optimal hydrogen binding energy (ΔG*) and 
downshifted d-band center to lower the kinetic barrier of hydrogen evolution reaction, but also promise 
conductive carbon bridge, high quality interface, and exposed abundant active sites for CdS, which synergisti
cally work with enhanced visible light absorption and promoted charge separation to promise the outstanding 
activity and stability of MoO2/Mo2C-C-CdS photocatalyst. This work not only provides an efficient and low cost 
cocatalyst for practical application, but also offers valuable insights into the design of robust cocatalyst for 
photocatalyst and beyond.   

1. Introduction 

With the acceleration of energy conservation, emission reduction 
and clean energy, renewable clean energy has gradually become a hot 
topic in the world energy field as a feasible technical route to promote 
global energy transformation [1]. Developing sustainable and cleaner 
energy is a looming challenge [2–4]. Photocatalyst assisted hydrogen 
evolution reaction (P-HER) was by converting exhaustless solar energy 
to green hydrogen energy has already been considered to be promising 
and effective way to solve these problems for its eco-friendly charac
teristic. Many semiconductors photocatalyst including TiO2 [5], CdS 

[6], g-C3N4 [7–9], ZnIn2S4 [10] etc have been explored to effectively 
decompose water to generate hydrogen. Among them, CdS shows strong 
competitiveness for the appropriate energy level structure and low cost. 
However, the efficiency of CdS photocatalyst is restricted by the 
inherent contradiction between the narrow band gap and fast charge 
recombination [11]. Cocatalyst decoration could boost the separation of 
electron-hole and lower the overpotential for P-HER, being turned out to 
be a pretty up-and-coming strategy for constructing an efficient photo
catalytic system [12]. Although Pt-based materials are undisputed state- 
of-the-art cocatalysts for P-HER, the expensive and scarce characters 
limit the industrialized application [13]. Substantial efforts have been 
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invested in developing noble metal free cocatalyst, including phosphide, 
sulfide and carbide [14,15], with some encouraging progress has been 
achieved. Nevertheless, most of these cocatalyst systems suffer from 
severe deactivation and instability during the P-HER process due to the 
strong oxidation of generated holes. To this end, exploiting cost-efficient 
and stable alternatives for robust noble metals is especially significant 
and highly imperative. 

Molybdenum (Mo)-based materials with special electronic configu
ration have received ever-increasing attention in photo/electro catalysts 
and Fenton catalysts [16–22]. Molybdenum oxide (MoO2) shows 
incomparable advantages in terms of the chemical stability, high con
ductivity (~6 × 103 S m− 1) and metallic properties for the Fermi level 
(EF) is localized within the 4d orbital of Mo element. Recently, several 
works have devoted the exploitation of MoO2 cocatalyst for photo
catalyst [23]. For instance, Yu group recently reported MoO2 cocatalyst 
act as holes acceptors to promote the hydrogen production and pyruvic 
acid synthesis of CdS [24]. Lou group developed ultrasmall MoOx 
clusters as a novel non-noble cocatalyst to promote the photocatalytic 
H2 generation rate of CdS. However, the inferior binding energy with H 
species, as well as the restricted exposure of active sites for the awkward 
aggregation at elevated synthesis temperatures is detrimental to the 
cocatalytic performance. In this perspective, designing and exploring 
efficient MoO2 cocatalyst with good dispersity, abundant exposed active 
sites and optimal electronic structure is of great concern for the con
struction of competent cocatalyst. 

Metal molybdenum carbides (Mo2C) was also reported to be effective 
non-Pt cocatalysts for H2 generation [25,26]. Nevertheless, the lower 
conductivity of Mo2C (1.02 × 102 S cm− 1) [27] and strong binding en
ergy with H atoms (ΔG = − 0.8 eV) [16] hampered the electrons transfer 
rate and hydrogen-evolution activity. Hence, the optimization of phase 
and electronic structure to realize the improvement of hydrogen evo
lution reaction (HER) activity is promising. 

Carbon scaffold was generally accepted as support to disperse 
nanoparticles, boost the conductivity and improve the catalytic perfor
mance [28,29]. Nevertheless, most of the carbon matrix was directly 
introduced, leading to the uneven distribution of nanoparticles and 
weak interface contact, restricting the improvement of catalytic activity. 
Aiming at this problem, the in-situ formation of carbon support to anchor 
and disperse cocatalyst nanoparticles is a good way to maximize reac
tion sites and cocatalytic activity. 

From the perspective of cocatalyst functionality, controllably tuning 
the electronic structure, especially binding energy for adsorbed species 
and the d-band center of cocatalyst could optimize the cocatalytic ac
tivity [30]. However, study on this issue is rare, and the structur
e–activity relationship of cocatalyst has not yet been sufficiently 
understood. Hence, artificially tailoring the electronic structure to 
achieve an efficient cocatalyst is interesting but challenging. 

Inspired by the afore-mentioned perspectives, herein, we delicately 
engineered hybrid MoO2/Mo2C NPs highly dispersed on conductive 
carbon scaffold (MoO2/Mo2C-C) by in-situ carbonization of MoO2-C to 
modulate the electronic structure with facilitated H2 desorption. Density 
functional theory (DFT) calculations reveal the carbonization of MoO2 
decreased Gibbs free energy and d-band center of cocatalyst in favor of 
desorption of hydrogen species. The MoO2/Mo2C-C decorated CdS 
(MMCC) was merited with a highly dispersed cocatalyst, electron 
transport carbon bridge, high quality interface contact and enhanced 
visible light absorption, which synergistically promoted the P-HER ac
tivity. Benefiting from these virtues, the optimal MMCC-0.3 exhibits a 
much higher photocatalytic H2 generation rate (18.43 mmol h− 1 g− 1) 
than that of MoO2-C-CdS (10.36 mmol h− 1 g− 1), also exceeding the 
previously reported other Mo-based cocatalyst decorated photocatalyst. 
Moreover, stability tests validate both structure and morphology of 
MoO2/Mo2C-C-CdS photocatalyst remains intact after successive 90 h 
testing. Furthermore, it is surprising to find that the MoO2/Mo2C-C 
cocatalyst retains initial activity even after being stored for 2 years. 

2. Experimental section 

Cadmium nitrate tetrahydrate (Cd(NO3)2⋅4H2O), thiourea 
(NH2CSNH2), ethylenediamine (C2H8N2), ammonium molybdate tetra
hydrate ((NH4)6Mo7O24⋅4H2O), phenylamine (C6H7N), methanol 
(CH3OH), hydrochloric acid (HCl). All used experimental materials were 
analytical grade and used without further purification. 

2.1. Preparation of MoO2/Mo2C-C cocatalyst 

Typically, 2 mmol (NH4)6Mo7O24⋅4H2O and 36 mmol phenylamine 
were dissolved in 40 mL deionized water and then the pH was adjusted 
to 4.0 by HCl solution. After being stirred at 50 ◦C for 6 h, white 
organic–inorganic hybrid precursors Mo3O10(C6H8N)2⋅2H2O were 
collected and served as a self-template to yield cocatalyst. Then, the 
dried Mo3O10(C6H8N)2⋅2H2O precursors were further treated at 775 ◦C 
for 2 h with a ramping rate of 5 ◦C min− 1 in the flowing N2 gas atmo
sphere and the target black MoO2/Mo2C-C was obtained. For compari
son, MoO2-C and MoO2/Mo2C-Mo were also prepared under 600 ◦C and 
930 ◦C heat treatment. 

2.2. Synthesis of CdS nanorods (NRs) 

CdS NRs were synthesized by the solvothermal method. 16.2 mmol 
Cd(NO3)2⋅4H2O and 48.6 mmol of NH2CSNH2 were dissolved in 80 mL 
of ethylenediamine to get a clear pale green solution. Then the solution 
was heated in a 50 mL Teflon-lined stainless steel autoclave at 160 ◦C for 
24 h. Finally, bright yellow CdS powder was collected by centrifugation, 
rinsed and dried. 

2.3. Synthesis of the MoO2/Mo2C-C-CdS (MMCC) photocatalyst 

MoO2/Mo2C-C and CdS were mixed by ultrasound method through 
self-assembly based on the electrostatic interaction between MoO2/ 
Mo2C-C and CdS nanorods. The zeta potential of MoO2/Mo2C-C at pH 7 
was measured to be as − 20.8 mV, while the value of CdS nanorod was 
8.9 mV and thus the negative charged MoO2/Mo2C-C could easily couple 
with positively charged CdS nanorod to form a heterojunction. The 
weight percentages of MoO2/Mo2C-C were controlled to be 20 wt%, 25 
wt%, 30 wt%, 35 wt% and 40 wt%, which are labeled as MMCC-x (x 
represents the mass fractions). For comparison, MoO2-C-CdS, MoO2/ 
Mo2C-Mo-CdS, C-CdS and 1 % Pt decorated CdS (Pt-CdS) photocatalysts 
were also prepared under the same conditions. 

2.4. Materials characterization 

Thermal analysis of Mo3O10(C6H8N)2⋅2H2O was measured on HCT-2 
HENVEN microanalyzer in the N2 atmosphere. The microstructure of the 
sample was characterized by X-ray diffraction (XRD) on Philips X’ Pert 
Pro diffractometer. X-ray photoelectron spectroscopy (XPS) and ultra
violet photoelectron spectroscopy (UPS) measurements were performed 
on the ESCALAB 250Xi X-ray photoelectron spectrometer. The X-ray 
absorption near edge structure (XANES) and extended X-ray absorption 
fine structure (EXAFS) of the Mo K-edge were measured at the 1W1B 
station in Beijing Synchrotron Radiation Facility operated at 2.5 GeV 
with a maximum current of 200 mA. Field-emission scanning electron 
microscopies (FESEM) and energy-dispersive X-ray spectroscopy (EDX) 
images were realized on JOLJSM-7500F. Transmission electron mi
croscopies (TEM) were performed on JEOL F200 Field emission high 
resolution transmission electron microscopy. Raman spectra were 
collected using a Thermo Scientific DXR Micro laser confocal Raman 
spectrometer with a 532 nm laser diode as the excitation source. BET 
specific surface areas were analyzed on Microtrac BEL BELSORP-max 
automatic instrument at 77 K. Fourier transform infrared spectrometer 
(FTIR) of the samples was recorded with Nexus 670 Thermo Nicolet 
Fourier transform infrared spectrometer. UV–vis diffuse reflectance 
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spectroscopy (DRS) was recorded on the Shimazu UV-2550 UV–vis 
spectrophotometer using BaSO4 as background. Surface photovoltage 
(SPV) spectroscopy was recorded on a lock-in amplier (SR830) accom
panied with a light chopper (SR540). A 500 W Xenon lamp (CHF 
XQ500W) equipment with a double prism monochromator was used as 
the light source. The photoluminescence (PL) spectra (F97 Pro) were 
conducted to analyze the separation of electron-holes of the samples 
under 320 nm excitation. Fluorescence lifetimes of various photo
catalysts were determined by time-resolved fluorescence spectra. 

2.5. Photocatalytic H2 evolution 

Photocatalytic H2 evolution was performed under a 300 W xenon 
lamp with a 420 nm cut-off filter (Perfect light, China). Typically, 30 mg 
photocatalyst, 80 mL water and 8 mL lactic acid were poured into a 250 
mL Pyrex reaction cell. The system was then pumped to vacuum before 
the reaction. After the visible light irradiation, the evolved H2 was 
detected on a gas chromatograph (GC-9700, China) with a 5 Å molecular 
sieves column and a thermal conductivity detector (TCD) under N2 
carrier gas. The photocatalyst was continuously used for 90 h except 
vacuum degassing every 3 h. Once the photocatalytic reaction of a 
testing cycle was complete, the subsequent cycle was started after 
degassed to completely remove dissolved gas. The temperature of the 
mixed liquor was maintained at 25 ◦C by cyclic water installation during 
the photocatalytic reaction. The apparent quantum efficiency (AQE) of 
the sample was determined under the same condition except for the 
wavelength of incident light. The AQE under monochromatic light was 
determined according to previous reports [31,32]. 

2.6. Photo electrochemical tests 

Photo-electro-chemical tests were conducted on CHI660E electro
chemical workstation with 0.5 M Na2SO4 electrolyte solution. Three- 
electrode system including Ag/AgCl (reference electrode), graphite 
rod (counter electrode) and sample loaded glassy carbon electrode 
substrate (working electrode) are equipped. The working electrode was 
prepared as follows: 4 mg photocatalyst, 7 mL water, 2 mL ethanol and 
1 mL Nafion were uniformly mixed together. Then, 5 μL slurry was 
coated on a pre-cleaned 3 mm glassy carbon electrode and dried in air. 
Transient photocurrent response (TPR) was obtained under a 300 W Xe 
lamp light with cut-off filter (λ>420 nm). Mott-Schottky (M− S) plot was 
conducted at three different frequencies. Electrochemical impedance 
spectroscopy (EIS) was obtained in 0.1 M KCl solution. The linear sweep 
voltammetry (LSV) was implemented in 0.5 M H2SO4. 

2.7. Theoretical calculations 

All the density functional theory (DFT) calculations were carried out 
by using the Vienna ab initio Simulation Package (VASP) [33]. The 
structures were optimized by considering the model of Mo2C (100)/ 
MoO2 (111) according to the HRTEM and XRD results. Perdew-Burke- 
Ernzerhof (PBE) method based on the generalized gradient approxima
tion (GGA) was adopted to analyze the properties of the material. The 
cutoff energy for plane wave truncation was selected as 500 eV. The first 
Brillouin zone uses a 3 × 3 × 1 Monkhorst-Pack (MP) grid for sampling. 
The interaction between ions and electrons was investigated using the 
projected augmented wave (PAW) method. The structure optimization 
process was terminated until the force on each atom was less than 0.02 
eV/Ǻ and the energy change was less than 1 × 10-5 eV. The DFT-D3 
semi-empirical correction proposed by Grimme was included in the 
calculation to obtain the correct structure. The Gibbs free energy change 
(ΔG) for each elemental step is defined as [34]: 

ΔG = ΔE+ΔZPE − TΔS+ΔGU +ΔGpH (1)  

where ΔE and ΔZPE represent the calculated adsorption energy and the 

zero-point energy correction, respectively. T is the temperature. ΔS, U, 
and ΔGpH are the entropy change, the applied electrode potential, and 
the free energy correction of the pH, respectively. 

The charge density difference was calculated to deeply understand 
the charge transfer process between MoO2 and Mo2C. The difference 
charge density of the hybrid cocatalyst is defined as follows: 

Δρ = ρhybrid − ρMoO2
− ρMo2C

(2)  

where ρhybrid, ρMoO2 and ρMo2C are the charge densities of the hybrid 
cocatalyst, MoO2 and Mo2C components. 

3. Results and discussions 

3.1. Synthesis and characterization of photocatalyst 

The overall preparation of MMCC photocatalyst was displayed in 
Fig. 1. Briefly, 1D organic–inorganic hybrid Mo3O10(C6H8N)2⋅2H2O 
precursor, as evidenced by the well matched XRD pattern (Fig. 2a) and 
SEM image (Fig. S1), was obtained by electrostatic assembly of C6H8N+

and Mo3O10
2- under alkaline condition. Here the Mo3O10(C6H8N)2⋅2H2O 

was served as self-sacrificial template for the cocatalyst synthesis. Based 
on the thermogravimetric curve (Fig. S2) and product analysis (Fig. 2a, 
Fig. S3–S4), the transformation process of Mo3O10(C6H8N)2⋅2H2O pre
cursor can be readily deduced as following Eqs. (3)–(7): 

C6H7N →
N2 C+H2↑ + N2↑(220 ∼ 480◦C) (3)  

[Mo3O10]clusters →
N2 MoO3(220 ∼ 480◦C) (4)  

MoO3 +C →
N2 MoO2 +COx↑( ∼ 600◦C) (5)  

MoO2 +C →
N2 Mo2C+COx↑( ∼ 775◦C) (6)  

MoO2 +Mo2C+C →
N2 Mo+COx↑( ∼ 930◦C) (7) 

Obviously, hybrid MoO2/Mo2C anchored on carbon matrix (MoO2/ 
Mo2C-C) can be obtained by partially in-situ carbonization of MoO2, 
which promises the formation of high quality interface between com
positions. After that, MoO2/Mo2C-C-CdS (MMCC) photocatalyst was 
obtained by ultrasonic mix MoO2/Mo2C-C cocatalyst and the as- 
prepared CdS NRs. 

XRD patterns and Raman spectra were applied to identifying the 
composition and phase of cocatalyst. The XRD pattern in Fig. 2a in
dicates the products obtained at 600 ◦C, 775 ◦C and 930 ◦C are MoO2-C, 
MoO2/Mo2C-C and MoO2/Mo2C-Mo, respectively. As for MoO2/Mo2C- 
C, the XRD diffraction peaks can be well indexed to the monoclinic 
MoO2 (JCPDS No. 32–0671) and cubic Mo2C (JCPDS No. 15–0457), 
respectively. The carbon species was evidenced by the Raman spectrum 
in Fig. 2b. Two characteristic Raman peaks at 1360.4 and 1592.2 cm− 1 

can be attributed to the D-band of disordered carbon (A1g vibration 
mode) and G-band of graphite carbon (E2g vibration mode), confirming 
the existence of amorphous and graphite carbon [35,36]. In addition, 
Mo-O-Mo stretching vibration (816.3 cm− 1), Mo = C bond in Mo2C 
(663.7 and 995.3 cm− 1), vibration modes of Mo-O in MoO2 (566.5 and 
729.4 cm− 1), and phonon vibration in MoO2 (199.1, 226.1, 280.8, 
337.9, 354.3, 376.5 and 489.3 cm− 1) indicate the presence of MoO2 and 
Mo2C in the cocatalyst [37–39]. 

SEM image of MoO2/Mo2C-C cocatalyst in Fig. 2c displays well 
scattered MoO2/Mo2C NPs are anchored on carbon scaffold. TEM image 
in Fig. 2d further confirms the well inherited one-dimensional precursor 
morphology with dispersed nanoparticles. These bright spots in selected 
area electron diffraction (SAED) pattern (Fig. 2e) are indexed to highly 
crystallized MoO2 and Mo2C NPs. No obvious lattice fringes of carbon 
matrix were observed in HRTEM images (Fig. 2f) for the amorphous 
structure, agreeing well with the XRD and Raman analysis. HRTEM 
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image in Fig. 2g displays partial MoO2/Mo2C NPs are encapsulated in 
carbon matrix. The clear lattice fringes with spacing of 0.342 nm and 
0.207 nm in Fig. 2g are ascribed to the(111) plane of MoO2 and (200) 
plane of Mo2C, respectively. The observed high-quality contact gua
rantees the fast charge carriers transfer between the different compo
nents. The high-angle annular dark-field scanning TEM (HAADF-STEM) 
image (Fig. 2i) and energy-dispersive X-ray spectroscopy (EDX) 
elemental mappings (Fig. 2j-m) evidence the MoO2/Mo2C NPs are 
highly and uniformly dispersed on the carbon matrix. The conductive 
carbon not only prevents the aggregation of cocatalyst but also provides 
“highways” for charge carriers’ transportation, which will benefit the 
separation of charge carriers. 

X-ray absorption structure (XAS) of Mo K-edge was applied to reveal 
the chemical state and local coordination environment of Mo species in 
MoO2-C and MoO2/Mo2C-C. The X-ray absorption near edge structure 
(XANES) in Fig. 3a indicates that MoO2-C has the highest energy ab
sorption edge (E0) due to a higher oxidation state [40,41]. The E0 of Mo 
species in the MoO2/Mo2C-C sample is located between that of Mo foil 
and MoO2-C, indicating Mo is positively charged and the average 
chemical valence is between Mo0 and Mo4+ [42]. The overall features of 
the Mo K-edge in MoO2/Mo2C-C strongly resemble that of MoO2-C, 
revealing a similar coordination structure. The corresponding Fourier 
transformed (FT) k3-weighted χ(k) function of extended XAFS (FT- 
EXAFS) curves are plotted in Fig. 3b. The peak at 2.36 Å (without phase 
corrected) for Mo-foil originates from the Mo-Mo backscattering coor
dination. In light of the MoO2-C sample, two main peaks at 1.56 and 
3.34 Å can be ascribed to Mo-O and Mo–Mo in the first and second co
ordination shells [43,44], respectively. The weak peak at 2.17 Å origi
nates from Mo-Mo backscattering. As for MoO2/Mo2C-C, the peak at 
1.56 Å can be fitted to Mo-C/O contributions [45], which is difficult to 
distinguish because of the similar bond lengths of Mo–O and Mo–C. 
However, the shorter Mo–Mo bond in MoO2/Mo2C-C is caused by the C 
atoms doped into the MoO2. Moreover, the amplitude of this peak is 
greatly increased compared to that of MoO2-C for the scattering con
tributions of Mo-C coordination. The well-resolved peaks at 2.14 Å 
(Mo–Mo) and 3.19 Å (Mo–Mo) reveal similar scattering paths to the 
MoO2-C. The determined coordination number of C/O atoms sur
rounding the Mo scatting center is 2.00 ± 0.34 by the quantitative fitting 

of the FT-EXAFS spectrum in R space (Fig. 3c and d, Table S1). The 
average distance of Mo-C/O shell is 2.00 ± 0.03 Å. The first derivatives 
of XANES at Mo K-edge of the samples were analyzed to reveal the 
electron density of Mo species and the plots are depicted in Fig. 3e. The 
observed maximum value of MoO2/Mo2C-C (20003.1 eV) is located 
between Mo foil (20000.0 eV) and MoO2-C (20008.8 eV), further indi
cating the oxidization state of Mo species [46,47]. Fig. 3f exhibits the 
relationship between half-energy and valence state of Mo K-edge [48]. 
The average oxidation state of Mo in MoO2/Mo2C-C is estimated to be +
1.75 by liner-fitting, indicating Mo is in electron deficient state [48]. 
Wavelet transforms EXAFS (WT-EXAFS) of Mo K-edge EXAFS oscillations 
based on Morlet wavelets was performed to reveal the radial distance 
resolution in the R and k space [49,50]. As shown in Fig. 3g, the intensity 
maximum at ~8.2 Å− 1 for Mo foil could be assigned to the Mo-Mo 
contribution. The intensity maximum at ~4.4 and ~12.3 Å− 1 for 
MoO2-C are assigned to Mo-O and Mo-Mo contributions. For MoO2/ 
Mo2C-C, the WT maximum center at ~6.5 Å− 1 corresponds to Mo-C/O 
while another at ~11 Å− 1 associates with Mo-Mo contribution, 
evidencing the formation of MoO2 and Mo2C in the sample. 

The obtained MoO2/Mo2C-C cocatalyst was then coupled with CdS 
NRs to evaluate the cocatalytic activity. XRD (Fig. 4a), SEM (Fig. S5a) 
and TEM images (Fig. 4b and c) of CdS photocatalyst indicate the suc
cessful preparation of well crystallized CdS NRs. XRD diffraction pat
terns of all MMCC samples in Fig. 4a illustrate the MoO2/Mo2C-C 
cocatalyst decoration not change the crystal structure of CdS NRs. In the 
XRD patterns of MMCC photocatalysts, a small peak at 26.03◦ corre
sponding to the (111) plane of MoO2 can be identified. Moreover, the 
diffraction peak of MoO2 slightly shifted to a lower value while the peak 
of CdS shifted to a higher value, which indicates a strong interface 
couple exists between MoO2 and CdS. SEM (Fig. 4d, Fig. S5b) and TEM 
(Fig. 4e) images of MMCC-0.3 sample indicate both MoO2/Mo2C NPs 
and CdS NRs are well-dispersed on the carbon matrix while some CdS 
NRs exist alone. HRTEM images in Fig. 4f and g forcefully testify the 
close interface contact between MoO2/Mo2C NPs, carbon matrix and 
CdS NRs. The STEM image (Fig. 4h) and corresponding elemental 
mappings (Fig. 4i–n) of MMCC-0.3 reveal the homogeneous distribution 
of CdS NRs and MoO2/Mo2C NPs over the entire carbon matrix. These 
results indicate MMCC photocatalyst with high quality interface contact 

Fig. 1. Schematic illustration of the synthesis of MoO2/Mo2C-C-CdS (MMCC) photocatalyst.  
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is successfully constructed. 
XPS survey spectrum was further analyzed to testify the composition 

and chemical valence states of the MMCC-0.3 photocatalyst. As plotted 
in the XPS survey spectrum (Fig. 5a), the MMCC sample is composed of 
C, Mo, O, S and Cd elements. The C 1 s signal of MoO2/Mo2C-C cocat
alyst in Fig. 5b can be deconvoluted into three peaks: 284.8, 286.1 and 
288.4 eV, corresponding to C–C, C–O single and C––O double bond, 
respectively [38,51]. The existence of C–O bond proves the strong 
interface interaction between MoO2 and carbon matrix [52]. For MMCC- 
0.3 photocatalyst, the corresponding binding energies are centered at 
284.8, 286.4 and 288.5 eV, respectively. Obviously, compared with 
MoO2/Mo2C-C cocatalyst (286.1 eV and 288.4 eV), the C 1 s binding 
energy of the MMCC-0.3 sample (286.4 eV and 288.5 eV) shifted 

positively, indicating interfacial interaction between CdS and MoO2/ 
Mo2C-C cocatalyst. Fig. 5c reveals the Mo 3d orbitals with four typictal 
peaks. As for MoO2/Mo2C-C, the peaks at 236.2 eV and 233.1 eV can be 
assigned to Mo 3d3/2 and Mo 3d5/2 of Mo4+ in MoO2, whereas the 
binding energies centered at 231.7 eV and 228.7 eV suggest the exis
tence of Mo2+ (Mo-Mo bond) [38,53,54] in Mo2C, respectivly. As for 
MMCC-0.3 sample, due to the strong interaction between cocatalyst and 
CdS, the peaks for Mo4+ (235.6 eV and 232.5 eV) and Mo2+ (231.1 eV 
and 228.1 eV) are slightly shifted negativly. The new peak at 226.1 eV is 
from the S 2 s in CdS [32]. Regarding the O1s in Fig. 5d, there are three 
peaks at 531.0 eV, 532.2 and 533.4 eV in MoO2/Mo2C-C. The peak at 
531.0 eV corresponds to the lattice oxygen O2− in the MoO2 [55], while 
the bind energy at 532.2 eV may be associated with the oxygen ions in 

Fig. 2. a) XRD patterns and (b) Raman spectra of different cocatalysts. c) SEM, d) TEM, (e) SAED pattern of the region labled by red line, (f-h) HRTEM, (i) HAADF- 
STEM image and corresponding EDS elemental mappings (j-m) of MoO2/Mo2C-C cocatalyst. 
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the low coordination or defective vacancy sites of the materials [56]. 
The peak at 533.4 eV comes from absorbed oxygen species. The rela
tively lower O1s spectrum in MMCC-0.3 photocatalyst is caused by the 
relatively low content of MoO2/Mo2C-C in MMCC photocatalyst, cor
responding with the XRD results. It is noteworthy that the relative in
tensity of lattice oxygen O2– in MMCC photocatalyst significantly 
decreased while the vacancies O2– increased, which may be caused by 
the oxygen loss from the lattice under ultrasound effect [57]. In com
parison, the O1s binding energy of the MMCC-0.3 photocatalyst present 
different degrees of negative-shift, verifying the increased electron 
density of cocatalyst. As observed in Fig. 5e, the Cd 3d3/2 and Cd 3d5/2 in 
the CdS are located at 411.6 and 404.9 eV [58], while the values for 
MMCC-0.3 are 412.1 and 405.4 eV respectively. In Fig. 5f, the two peaks 
at 162.3 and 161.1 eV corespond to the S 2p1/2 and S 2p3/2 of CdS, 
respectivly [59]. As for MMCC-0.3 photocatalyst, both the Cd 3d and S 
2p orbitals are shifted postively for the decreased electron density. The 
opposite electron transfer direction convincingly demonstrates strong 
interface interaction exist between MoO2/Mo2C-C cocatalyst and CdS, 
which effectivly benefit the charge transfer and hence acclearate the 
photocatalytic H2 evolution activity. Moreover, FT-IR (Fig. S6) and 
Raman spectra (Fig. S7) indicate the similar features of CdS before and 
after cocatalyst introduction. The slightly increased specific surface 
areas and pore structure (Fig. S8, Table S2) indicate the introduction of 
MoO2/Mo2C-C cocatalyst exerts only negligible effect on the CdS. 

3.2. Photocatalytic H2 evolution activity 

To evaluate the activity of MoO2/Mo2C-C cocatalyst, photocatalytic 
H2 evolution activity of MMCC sample was estimated, along with MoO2- 
C, MoO2/Mo2C-Mo, C and commercial platinum carbon modified CdS 
studied for comparison. As shown in Fig. 6a, CdS alone exhibits low H2 
evolution rate of 3.78 mmol h− 1 g− 1, while no H2 evolution was detected 
for MoO2/Mo2C-C cocatalyst. When combine MoO2/Mo2C-C with CdS, a 
remarkably improved H2 evolution rate was achieved, indicating MoO2/ 
Mo2C-C merely act as co-catalyst for photocatalytic H2 evolution. 
Among the MMCC photocatalyst, MMCC-0.3 sample offers the highest 
H2 production rate of 18.43 mmol h− 1 g− 1, which is 4.87-fold 
enhancement with respect to bare CdS. The H2 generation rate 
decreased for higher cocatalyst content due to the “shielding effect” of 
photocatalyst [60]. Fig. 6b compares the photocatalytic H2 evolution 
rate of various cocatalyst modified CdS. Significantly, the MMCC-0.3 
exhibits much higher photocatalytic activity than other cocatalyst 
modified CdS, including MoO2-C-CdS (10.36 mmol h− 1 g− 1), MoO2/ 
Mo2C-Mo-CdS (15.52 mmol h− 1 g− 1) and C-CdS (5.15 mmol h− 1 g− 1), 
even close to the state-of-the-art 1 wt% platinum carbon modified CdS 
(Pt-CdS, 19.58 mmol h− 1 g− 1), indicating the absolutely essential 
function of MoO2/Mo2C NPs and carbon matrix for the superior pho
tocatalytic activity of MMCC photocatalyst. 

Apart from the H2 evolution rate, the long-term stability is equally 
important for a practical photocatalyst [61]. Fig. 6c presents the dura
bility test of MMCC-0.3 photocatalyst. Obviously, the MMCC-0.3 shows 

Fig. 3. a) XANES and b) Mo K-edge FT-EXAFS for MoO2/Mo2C-C, MoO2-C along with Mo foil reference sample. EXAFS fitting curve of MoO2/Mo2C-C at (c) R space 
and (d) k3 weighted k-space. e) The first derivatives of XANES at Mo K-edge. f) Relationship between half step energy and oxidation state of the Mo species. g) WT- 
EXAFS of Mo K-edge EXAFS oscillations. 
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identical H2 evolution activity during continuous 90 h long-term dura
bility measurement (conducted in 15-day) without a secondary sacrifi
cial agent supplement, indicating the excellent stability. Excitingly, the 
activity of MoO2/Mo2C-C cocatalyst can be well retained even after 2 
years of storage under atmospheric conditions. Moreover, the XRD 
pattern (Fig. 6d), SEM image (Fig. S9), XPS spectra (Fig. 6e and f, Fig. 
S10) and TEM images (Fig. 6g, Fig.S11) of used MMCC-0.3 photocatalyst 
with negligible change, further reveals the structure stability nature of 
MMCC-0.3 photocatalyst. In contrast, the H2 evolution rate of control 
samples deteriorated seriously during 18 h (Fig. 6h). The photocatalytic 
H2 evolution rate of MoO2/C-CdS decreases by 64.6 %, while MoO2/ 
Mo2C-Mo-CdS decreases by 55.0 % in successive 6 runs, respectively. 
This result indicates the absolutely essential functions of MoO2/Mo2C 
NPs and carbon matrix for the superior stability of MMCC-0.3 photo
catalyst. In this case, carbon matrix may not only serve as fast electron 
delivery channel but also protect the cocatalyst from photo erosion by 

embedding partial MoO2/Mo2C. Moreover, the wavelength-dependent 
apparent quantum efficiency (AQY) value in Fig. 6i indicates the 
enhanced electron utilization efficiency for MMCC-0.3 photocatalyst, 
with the value reaching 14.13 % under 440 nm. To our delight, the P- 
HER activity and AQY value rank the reported state-of-the-art Mo-based 
co-catalyst (Table S3) and non-noble metal co-catalyst modified CdS 
photocatalysts (Table S4). Consequently, Mo2C not only could enhance 
the cocatalytic activity of MoO2 but also promise super long-term sta
bility, which is crucially important for practical application. 

3.3. Photocatalytic mechanism discussion 

To explore the essential reasons of remarkable activity for MoO2/ 
Mo2C-C cocatalyst, First-principle DFT calculation was performed to 
uncover the intrinsic influence of Mo2C on MoO2 cocatalytic activity. 
The optimized geometric structure of MoO2 (111)/Mo2C (100) was 

Fig. 4. (a) XRD patterns of CdS, MoO2/Mo2C-C cocatalyst, and MMCC composites. (b) TEM and (c) HRTEM images of CdS NRs. (d) SEM, (e) TEM, (f-g) HRTEM 
images, (h) STEM image and the corresponding elemental mapping images of C, Cd, Mo, O and S elements of MMCC-0.3 photocatalyst (i-n). 
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shown in Fig. 7a–c. The hydrogen adsorption Gibbs free energy (ΔGH*) 
of catalyst is generally accepted to determine the P-HER activity. Since 
|ΔGH*| reflects the reversible desorption of H* from the active sites, an 
ideal cocatalyst should have the value of ΔGH*≈0 [62–64].As shown in 
Fig. 7d, the MoO2/Mo2C hybrid cocatalyst exhibits a much lower |ΔGH*| 
value (0.15 eV) than MoO2 (0.59 eV) and Mo2C (0.85 eV), very close to 
ideal Pt (0.10 eV), indicating the positive role of Mo2C to promote the 
cocatalytic performance. The zero-approaching |ΔGH*| facilitates the H 
adsorption/desorption process and promises it great superiority for 
excellent photocatalytic H2 evolution performance. 

In order to deeply understand the electronic coupling interaction in 
the Mo2C/MoO2 heterojunction, the differential charge density at the 
interface was analyzed. As shown in Fig. 7e, the distinct charge distri
bution at the interface indicates a strong electronic interaction between 
MoO2 and Mo2C. The yellow and cyan regions represent the charge 
accumulation and deletion, respectively. Careful analysis reveal that 
electrons are transferred from MoO2 to Mo2C, thus optimizing the 
electronic structure and |ΔGH*|, leading to the promoted separation of 
photo-generated charges. Moreover, the density of states (DOS) was 
further investigated to uncover the electronic interaction between 
cocatalyst and adsorbate [65]. As shown in Fig. 7f, the Fermi level of 
MoO2 passed through the conduction band, verifying the metallic 
characteristic [66]. Moreover, the enhanced localized states density 
near the Fermi level of MoO2/Mo2C (Fig. 7g) indicates the improved 
intrinsic electrical conductivity and thus guarantees the fast electron 
transfer [67], contributing to the enhanced P-HER activity. The d-band 
center model has been used to explain the catalytic activity of transition 
metal [68,69]. Generally, the orbit of adsorbates will couple with d state 
of transition-metal and result the splitting of energy level, giving rise to 
the formation of bonding state and antibonding states. Bonding state is 
always occupied, while antibonding is partially occupied. The proba
bility of electron filling in the antibonding states depends on the relative 
position of the orbitals to the Fermi level. The higher the d-band of the 
transition metal and the antibonding state energy, the lower the occu
pied degree, hence the stronger the chemical binding between the 
transition metal and adsorbates. Therefore, the P-HER activity of the 

catalyst could be tuned by tailoring the position of the d-band center. As 
shown in Fig. 7h and i, the d-band centers of MoO2/Mo2C heterojunction 
and MoO2 are located at − 1.27 eV and − 1.15 eV, respectively, indi
cating the d-band center is downshifted and far away from the Fermi 
level after the formation of Mo2C. Hence, the antibonding state is 
reduced and more electrons will be filled in [68]. As a result, the 
interaction between cocatalyst and adsorbate is weakened and the 
desorption of H* from the surface of cocatalyst is facilitated to promote 
the H2 evolution. 

Apart from the optimized |ΔGH*| value and d-band center of MoO2/ 
Mo2C, the optical and electrochemical properties of MMCC-0.3 photo
catalyst was further explored to gain insight into the accurate mecha
nism of fantastic cocatalytic activity. UV–vis DRS spectrum of all the 
samples in Fig. 8a with absorption band edges at 520 nm was caused by 
the intrinsic absorption of pure CdS. Strong continuous light absorption 
of MoO2/Mo2C-C cocatalyst between 400 ~ 800 nm suggests the 
metallic nature of MoO2/Mo2C-C cocatalyst [70], consists with DFT 
results. The visible light absorption abilities of MMCC samples enhanced 
significantly due to the decoration of MoO2/Mo2C-C cocatalyst, corre
sponding well with the color change (inset in Fig. 8a). The determined 
band gaps (Eg) by the expression : [(αhv)2

= A
(
hv − Eg

)
for CdS is 2.30 eV 

[71]. 
Mott-Schottky plots are conducted to ascertain the band structure of 

the sample based on the Mott–Schottky function in Eq.(8): 

1
c2 =

2
A2εε0qND

(E − EFB −
kBT

q
) (8) 

Here, C is the space charge layer capacitance; kB is the Boltzmann 
constant; A is the interfacial area b; ε and ε0 are dielectric constant of 
CdS and vacuum permittivity (8.85 × 10-14F m− 1); ND is the carrier 
density; q is the elementary charge (1.6 × 10− 19C); E is the implemented 
potential; EFB is the flat-band potential and T is the absolute 
temperature. 

M− S plots in are plotted in Fig. 8b, the positive slope in the plots of Cs
- 

2 versus external voltage indicates the n type characteristic of CdS 
photocatalyst. The flat potential (Efb) can be determined from the 

Fig. 5. (a) XPS survey spectra of CdS NRs, MoO2/Mo2C-C cocatalyst and MMCC-0.3 photocatalyst. High resolution XPS spectra of (b) C 1 s, (c) Mo 3d, (d) O 1 s, (e) 
Cd 3d and (f) S 2p of CdS NRs, MoO2/Mo2C-C cocatalyst and MMCC-0.3 photocatalyst. 
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intersection point of three extension lines along the curves. The Efb of 
CdS is estimated to be − 1.45 versus the Ag|AgCl electrode, which is 
equal to − 1.23 versus standard hydrogen electrode (NHE). Thus the 
conduction band (CB) position of CdS is calculated to be − 1.23 V, for the 
fact that the Efb is approximately equal to the CB edge. Hence, the 
valence band (VB) position of CdS is determined to be 1.07 V based on 
the empirical formula [72]: EVB = ECB + Eg. In addition, ultraviolet 
photoelectron spectroscopy (UPS) results of CdS and MoO2/Mo2C-C are 
shown in Fig. 8c–f. The band gap between valance bands maximum 
(VBM) and Fermi level (Ef) of CdS and MoO2/Mo2C-C are 1.07 and 1.02 
eV, while the cut-off edges for CdS and MoO2/Mo2C-C are 15.9 and 15.5 
eV, respectively. Thus, the work functions (φ) of CdS and MoO2/Mo2C-C 
are determined to be 5.3 and 5.7 eV according to φ = hυ-(Ecutoff -EFermi) 
(hυ = 21.22 eV) [73]. The higher work function of MoO2/Mo2C-C in
dicates the strong electrons withdrawing ability, which could capture 
electrons from CdS and hence and hence significantly suppress the 
electron-hole recombination to enhance the photocatalytic H2 evolution 
activity of CdS [74]. 

The charge transfer dynamics was probed by multiple technologies 
including PL, TPR, SPV and time-resolved fluorescence spectra. PL 
spectra of all the samples excited at 320 nm are shown in Fig. 9a. After 
the decoration of MoO2/Mo2C-C cocatalyst, the emission intensity of 
MMCC photocatalyst decreased remarkably, especially for MMCC-0.3 

sample, indicating the MoO2/Mo2C-C cocatalyst could efficiently pro
mote the separation of charge carriers [75]. TPR in Fig. 9b further re
veals the charge separation behavior. For MoO2/Mo2C-C cocatalyst, no 
photocurrent signal is observed for the metallic characters [76,77]. Very 
weak photocurrent was observed for CdS due to the fast recombination 
of photo excited electrons and holes. As for MMCC samples, the 
photocurrent density increased significantly, among which MMCC-0.3 
sample shows the highest value for the best electron-hole separation 
efficiency [78]. Since SPV signal is caused by the surface potential 
change, the positive photo voltage signals of CdS and MMCC-0.3 are the 
results of holes accumulation on the sample surface, indicating both of 
them are n-type semiconductors (Fig. 9c). The significantly enhanced 
SPV signal of MMCC-0.3 can be interpreted by the fact that more holes 
are accumulated for efficient charge separation [79]. These results prove 
the electrons and holes are efficiently separated to prolong the electron 
lifetime, as further decoded by time-resolved fluorescence spectra at 
320 nm excitation wavelength in Fig. 9d. The curves are well matched 
by two-exponential fitting based on the following Eq. (9): 

It = A1exp
(

−
t

τ1

)

+A2exp
(

−
t

τ2

)

(9)  

where A1 and A2 are the contributions of two different processes to the 

Fig. 6. (a) Photocatalytic H2 evolution rate of MMCC-x (x = 0.2, 0.25, 0.3, 0.35 and 0.4) photocatalysts under visible light irradiation (λ ≥ 420 nm). (b) Activity 
comparison of various photocatalysts including MoO2-C-CdS, MoO2/Mo2C-Mo-CdS and C-CdS photocatalyst. (c) Long-term stability tests of MMCC-0.3 photocatalyst. 
(d) XRD patterns and (e-f) XPS of fresh and used MMCC-0.3 photocatalyst. (g) TEM image of used MMCC-0.3 (h) Comparison of stability of CdS, MoO2-C-CdS, MoO2/ 
Mo2C-Mo-CdS and Pt-CdS samples. (i) Wavelength dependence of AQE and H2 evolution for MMCC-0.3 and CdS. 
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fluorescence lifetime; the shorter lifetime τ1 corresponds to the fast 
quench of carriers trapped at shallow defect states of CdS while longer τ2 
is the lifetime related with the radiative recombination of charge car
riers at deeper sites. 

The average lifetimes (τ) of photo-excited carriers were determined 
by Eq. (10): 

τ =
A1τ2

1 + A2τ2
2

A1τ1 + A2τ2
(10) 

The determined τ1, τ2 and average lifetimes (τ) of photo-excited 
carriers are shown in Table S5. Obviously, compared with bare CdS 
(τ1 = 1.23 ns, τ2 = 3.98 ns), the decay lifetime of MMCC-0.3 photo
catalyst (τ1 = 0.84 ns, τ2 = 2.61 ns) are significantly decreased for the 
electrons are rapidly transferred to the MoO2/Mo2C-C cocatalyst [80]. 
Meanwhile, the calculated average decay time of MMCC-0.3 (τ = 2.53 
ns) is lower than that of CdS (τ = 3.59 ns), revealing the effective carrier 
separation by the delocalization of electrons from CdS to MoO2/Mo2C-C 
[81,82]. The suppressed charge recombination was caused by the 

carbon matrix being fast channel for electrons transfer in the non- 
radiative recombination pathways, as reported in other works [83,84]. 
Furthermore, the charge transfer dynamics can be concluded based on 
the calculated electron transfer rate constants (ket) from Marcus’ theory 
in Eq. (11): 

ket(MMCC→CdS) =
1

τ(MMCS)
−

1
τ(CdS)

(11) 

The obtained ket associated with electrons transfer from CdS to 
MoO2/Mo2C-C cocatalyst was determined to be 0.8 × 108 s− 1. These 
results indicate the photo-generated electrons were efficiently trans
ferred from CdS to MoO2/Mo2C in virtue of the carbon matrix, which 
significantly contributes to the photocatalytic activity. 

The increased charge transfer for MMCC was further verified by 
Nyquist plot in the EIS and LSV polarization curves [85]. As shown in 
Fig. 10a, the significantly decreased semicircle radius of MMCC-0.3 
manifests the MoO2/Mo2C-C cocatalyst could efficiently decrease the 
interfacial charge transfer resistance and result in efficient charge 

Fig. 7. DFT calculations: The top and side view of the three molecular structure for DFT calculations. (a) MoO2 (111), (b) Mo2C (100) and (c) Mo2C (100)/MoO2 

(111). d) ΔGH* on various cocatalyst. e) The differential charge density of MoO2/Mo2C. The isovalue of the isosurfaces is 3.0 × 10-3 eÅ− 3, yellow and cyan represents 
the charge accumulation and deletion, respectively. DOS of (f) MoO2 and (g) MoO2/Mo2C. d-band center of MoO2 (h) and MoO2/Mo2C cocatalyst (i). 
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carriers’ separation, thus ensuring high H2 evolution efficiency. The 
roles of MoO2/Mo2C-C cocatalyst in the P-HER process are further 
demonstrated by LSV plots in Fig. 10b. Obviously, MoO2/Mo2C-C 
cocatalyst has the lowest over-potential η10, indicating the superior H 
proton reduction capacity [86]. Compared with CdS, the η10 of MMCC- 
0.3 sample is much lower due to the decoration of MoO2/Mo2C-C 
cocatalyst, implying that the energy barrier for P-HER of CdS is declined 
by the loading of MoO2/Mo2C-C. Moreover, the smallest Tafel slope for 
MMCC-0.3 sample (inset of Fig. 10b) reveal that the hydrogen produc
tion kinetics is much favorable in comparison with CdS, further 
demonstrating the fastest kinetic rate. 

Based on the results mentioned above, the superior P-HER perfor
mance of MMCC photocatalyst could be attributed to the synergistic 
effect of structure and components, as schematically elaborated in 
Fig. 11. Under visible light irradiation, majority of the photo-excited 
electrons on the CB of CdS will pass through carbon matrix and inject 
into MoO2/Mo2C electron reservoir for H2 evolution. Meanwhile, the 

holes in the VB of CdS participate in the oxidation reaction of lactic acid. 
The superior photocatalytic H2 production activity and excellent sta
bility of the MMCC-0.3 sample could be ascribed to the following as
pects: (i) the formation of metallic hybrid MoO2/Mo2C heterojunction 
optimize the electronic structure by adjusting d-band center and 
hydrogen binding energy (△GH*) to accelerate the H2-production re
action. (ii) in-situ formation of conductive carbon matrix in the cocata
lyst not only alleviates the aggregation of MoO2/Mo2C cocatalyst to 
expose abundant active sites but also serves as ideal electron transport 
bridge to facilitate charge separation. (iii) in-situ carburization of MoO2 
by carbon ensured the intimate coupling interaction at the atomic level 
between MoO2, Mo2C and carbon components, thus facilitating the 
charge transfer rate. (iv) the increased visible light absorption, reduced 
electron transfer resistance and boosted charge separation ability were 
realized in a wonderful MMCC photocatalyst. 

To further confirm whether the MoO2/Mo2C-C is a versatile cocat
alyst for other photocatalyst, the MoO2/Mo2C-C-TiO2 and MoO2/Mo2C- 

Fig. 8. (a) DRS of CdS, MoO2/Mo2C-C, and MMCC samples and the corresponding Tauc plots of UV–vis spectra (inset), (b) M− S curves of CdS under three different 
frequencies. (c-d) UPS spectra of CdS and MoO2/Mo2C-C taken with a photon energy of 21.2 eV, with 0 eV binding energy corresponding to the Fermi level. Zoomed 
in views of the (e) higher binding energy region and (f) low binding energy region. 
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C-ZnIn2S4 are also prepared by mixing MoO2/Mo2C-C with TiO2 and 
ZnIn2S4 under the same condition respectively. The photocatalytic 
hydrogen evolution rates were tested under full spectrum for MoO2/ 
Mo2C-C-TiO2 and visible light for MoO2/Mo2C-C-ZnIn2S4. As shown in 
Fig. S12, the hydrogen evolution rates of MoO2/Mo2C-C-TiO2 and 
MoO2/Mo2C-C-ZnIn2S4 are significantly enhanced than that of pure 
TiO2 and ZnIn2S4, indicating the MoO2/Mo2C-C can be used as a uni
versal and efficient cocatalyst for various photocatalysts. 

4. Conclusions 

In summary, a highly active and super stable MoO2/Mo2C-C cocat
alyst was successfully constructed for CdS photocatalytic H2 evolution. 

The optimized hydrogen binding energy, d-band center and strong 
electron coupling in hybrid cocatalyst endow MoO2/Mo2C-C fantastic 
cocatalytic activity. Notably, the coupled MoO2/Mo2C-C-CdS photo
catalyst gives splendid P-HER performance and durability. The syner
gistic effects of optimized cocatalyst, highly conductive carbon bridge, 
high quality interface between various components, enhanced light 
absorption ability and inhibited charge recombination for excellent 
photocatalytic performance was certified. It is expected that the strategy 
adopted here provides valuable insight for the construction of other 
efficient cocatalysts for P-HER performance. 

Fig. 9. (a) RT-PL spectra and (b) TPR of the all the samples; (c) SPV and (d) time-resolved fluorescence spectra of CdS and MMCC-0.3.  

Fig. 10. (a) EIS curves and (b) LSV polarization curves of MoO2/Mo2C-C, CdS and MMCC-0.3 samples.  
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