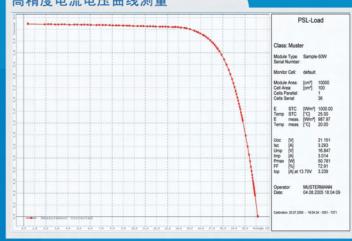


电站现场组件性能检测车

北京群菱PVST-9300电站现场组件性能检测车,内置有世界先进的德国Berger太阳光模拟器与恒温控制系统,通过北京群菱公司安装调试与系统集成,构建成光伏组件完整的现场检测系统,满足在光伏电站现场为用户快速提供高精度的太阳能实验室权威检测报告。

北京群菱PVST-9300电站现场组件性能检测车,提供满足各种类型光伏系统和光伏组件的快速测试技术、组件功率衰减判定、电站质量与资产评估检测,为光伏系统和光伏组件在各种运行条件下的特性提供有效数据和综合分析,为光伏电站建设项目的科研论证提供检测依据,同时填补了高精度移动式光伏电站现场测试平台的技术空白,移动检测车为光伏电站建设、组件衰减验证、电站验收、电站质量与电站资产评估提供有力的技术保障。

试验设备系统集成安装于9米集装箱


移动检测车,产品外观图

符合IEC60904-9中AAA级标准要求

3.6				1		
2 1.5						
2						
1.5	-	and the state of t	A ACTOR	M	1.1	Measurement AM1.5
1			T TO	MM	m Market	7
0.5	7.11			1	MA	
300	400	500	600 700 Wavelength	600	900	1000 1

	Standard	Measurement	Percentage	Class
300-400nm	5.73%	5.76%	1.01	A+
400-500nm	17.35%	17.26%	1.00	A+
500-600nm	18.77%	18.12%	0.97	A+
600-700nm	17.31%	16.78%	0.97	A+
700-800nm	14.07%	13.91%	0.99	A+
800-900nm	11.75%	12.35%	1.05	A+
900-1100nm	15.02%	15.81%	1.05	A+

高精度电流电压曲线测量

Qunling Energy Resources

北京群菱专注于检测领域 最新产品服务信息: www.qunling.cc

主要应用:

- 1、在电站现场对光伏组件样品抽检、工程质量监造、工程竣工验收、电站出质保期验收。
- 2、组件发电功率衰减的精确验证及评估分析。
- 3、 电站保险、电站质量评估、二手电站交易资产评估、融资机构现场高精度检测光伏组件性能。

核心试验设备的产品优势: 移动检测车内置采用国际、国内太阳能光伏实验室广泛使用的德国Berger太阳光模拟器, 具备电站现场组件性能、转换效率、最大功率快速测试能力,测试条件与实验室完全一致。德国BERGER太阳光模拟器在 全球安装量超过3800台,中国地区安装超过450台。

核心试验设备的典型用户: 扬州光电产品检测中心、无锡国家光伏质检中心、台湾工研院、广州赛宝、TÜV 莱茵(上海)、中检南方(深圳)、美国国家标准研究院、天津18 所、CSA 认证集团、英利集团、天合光能、韩华新能源、亿晶光电、东方日升、阿特斯、中盛光电、晶科能源、中电光伏、正泰太阳能、无锡尚德(顺风光电)、爱德太阳能、昱辉阳光等等…

移动检测车的突出优点:

- 1. 具备被测组件加热、冷却系统,满足组件现场STC测试条件:组件温度25℃,AM1.5G,辐照强度1000W/m2,真正解决测量偏差问题。可以同时处理多达10片组件,提高现场测试效率。
- 2. 测试面积内光谱匹配、照度不均匀度、照射强度不稳定度都符合IEC60904-9中AAA级标准要求。光谱匹配≤ 12.5 %; 辐照不均匀度≤ 2%; 辐照度不稳定度≤ 2.0 %。
- 3. 支持单晶、多晶组件、高效组件和薄膜组件的精确测量。适用于太阳电池组件电站现场测试条件,测试面积可达 2.0m X 1.0m。
- 4. 全被动式的测量负载,同步电流、电压测量数据采样,测量精度高于0.1%FS。不同于主动式负载,纯阻性全被动式负载不干预测量过程,能更精确地测量和复现组件性能数据,具有极高的测量准确性、稳定性和重复性,30次 Pmax测量偏差≤ 0.15 %。
- 5. 灯源寿命超过10万次,具备更短的维护与停机时间,更少的使用成本。
- 6. 检测车自带发电系统为系统供电,同时支持现场市电供电,提高系统现场工作的灵活性。

群菱PVST-9300电站现场组件性能检测车,等同于一个可移动的太阳能检测实验室,满足各类光伏电站现场检测服务,直接快速出具第三方权威检测报告。 需要"电站现场组件性能检测车"详细技术资料,请您随时与北京群菱销售部联络,我们将热忱欢迎您的来电!

北京群菱能源科技有限公司

■地址:北京经济技术开发区科创十四街汇龙森科技园33号楼B座6层

■电话: 010-56290111 ■传真: 010-56532088 ■邮箱: innet@china.com ■网址: www.qunling.cc/