DH253Hall-effect sensor is a temperature stable, stress-resistant switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

DH253 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

DH253 is rated for operation between the ambient temperatures -40°C and $+85^{\circ}\text{C}$ for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height), SQ is an QFN2020-3(0.55 mm nominal height), a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

The package type is in a Halogen Free version was verified by third party Lab.

Features and Benefits

- CMOS Hall IC Technology
- Solid-State Reliability much better than reed switch
- Omni polar output switches with absolute value of North or South pole from magnet
- Low power consumption(2.6mA)
- High Sensitivity for reed switch replacement
- 100% tested at 125° C for K.
- Small Size
- ESD HBM ±4KV Min
- COST competitive

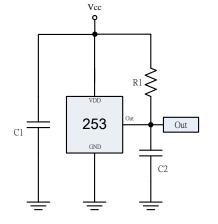
Applications

- Solid state switch
- Lid close sensor for power supply devices
- Magnet proximity sensor for reed switch replacement in high duty cycle applications.
- Safety Key on sporting equipment
- Revolution counter
- Speed sensor
- Position Sensor
- Rotation Sensor
- Safety Key

型号: DH253

Absolute Maximum Ratings At $(Ta=25 \ C)$

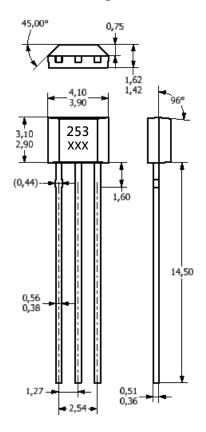
Characteristics			Values	Unit
Supply voltage,(VDD)			7	V
Output Voltage,(Vout)			6	V
Reverse voltage, (VDD) (VOUT)			-0.3	V
Magnetic flux density			Unlimited	Gauss
Output current,(Iovr)			25	mA
Operating Temperature Range, (Ta)		"E" version	-40 to +85	°C
		"K" version	-40 to +125	°C
Storage temperature range, (Ts)			-55 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)			150	°C
Thermal Resistance	$(\theta_{JA}) \text{ UA / SO / SQ}$		206 / 543 / 543	°C/W
	(θ _{sc}) UA / SO / SQ		148 / 410 /410	°C/W
Package Power Dissipation, (PD) UA/SO/SQ			606 / 230 / 230	mW

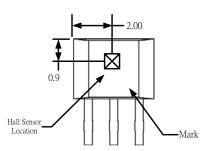

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

Electrical Specifications

DC Operating Parameters $T_A=+25 \, \text{°C}$, $V_{DD}=5.0 \text{V}$

Parameters		Test Conditions	Min	Тур	Max	Units	
Supply Voltage,(VDD)		Operating	2.5		6	V	
Supply Current,(IDD)		Average		2.6	6.0	mA	
Output Low Voltage,(VDSON)		IOUT=10mA			400	mV	
Output Leakage Current,(Ioff)		IOFF B <brp, vout="5V</td"><td></td><td></td><td>10</td><td>uA</td></brp,>			10	uA	
Output Rise Time, (T_R)		$RL=10k\Omega$, $CL=20pF$			0.45	uS	
Output Fall Time, (T_F)		$RL=10k\Omega$; $CL=20pF$			0.45	uS	
Electro-Static Discharge		нвм	4			KV	
Operate Point,	(B_{OPS})	S pole to branded side, B > BOP, Vout On		30	60	Gauss	
	(B_{OPN})	N pole to branded side, B > BOP, Vout On	-60	-30			
Release Point	(B_{RPS})	S pole to branded side, B < BRP, Vout Off	5	25		Gauss	
	(B_{RPN})	N pole to branded side, B < BRP, Vout Off		-25	-5		
Hysteresis,(B _{HYS})		BOPx - BRPx		5		Gauss	

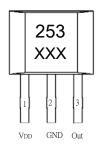

Typical Application circuit


C1: 10nFC2: 100pFR1: $10K\Omega$

Sensor Location, Package Dimension and Marking MH253 Package

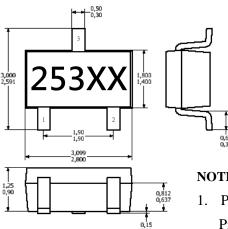
UA Package

Hall Chip location

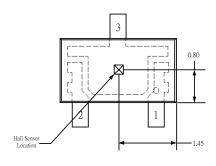

NOTES:

- 1).Controlling dimension: mm
- 2).Leads must be free of flash and plating voids
- 3).Do not bend leads within 1 mm of lead to package interface.
- 4).PINOUT:

Pin 1 V_{DD} **GND** Pin 2

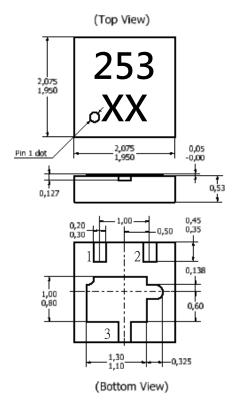

Pin 3 Output

Output Pin Assignment (Top view)



SO Package

(Top View)


Hall Plate Chip Location (Bottom view)

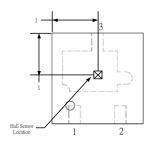
NOTES:

- 1. PINOUT (See Top View at left:)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 **GND**
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

SQ Package

NOTES:

PINOUT (See Top View at left)


Pin 1 VDD

Pin 2 Output

Pin 3 GND

- Controlling dimension:
 mm;
- 3. Chip rubbing will be 10mil maximum;
- 4. Chip must be in PKG. center.

Hall Plate Chip Location (Top view)

