

GCU 用户手册

版本历史

日期	文档版本
2023.06.19	V1.0

日期	文档版本
2023.10.16	V1.1

1. 产品概述 - 接口定义:细化接口示意图。[P3]

2. 设置与固件升级:

- 2.1 修改 GCU 默认 IP 地址(192.168.1.121 → 192.168.144.121)与相机默认
 IP 地址(192.168.1.108 → 192.168.144.108)。[P4]
- 2.2 增加首次运行 GCU_Config 时需要赋予网络权限的提示。[P4]

2.3 设置与固件升级 - 设置 -S.BUS 设置:修改跟随模式的说明。[P6]

3. 附录 2 外形尺寸:增加对 GCU 散热的要求。[P9]

4. 增加附录 4: MAVLink 通信流程。[P12]

目录

产品概述	1
简介	1
部件介绍	2
状态指示灯	2
接口定义	3
设置与固件升级	4
设置	4
固件升级	8
附录1参数表	8
附录 2 外形尺寸	9
附录 3 MAVLink 配置说明	10
ArduPilot	10
PX4	11
附录 4 MAVlink 通信流程	12

产品概述

简介

GCU 支持 Z 系列吊舱与 D 系列吊舱。配合 Dragonfly 显控软件可在电脑上实时显示画面,并实现对吊舱的控制。

GCU 体积小巧,具有丰富的扩展接口。支持网络、串口及 S.BUS 控制,同时兼 容私有协议与 MAVlink 协议,方便进行二次开发。

部件介绍

1. ETH 接口	2. POWER 接口	3. UART2 接口
4. UART 接口	5. S.BUS 接口	6. 吊舱控制接口
7. 状态指示灯		

状态指示灯

蓝灯闪烁	正常工作
蓝灯常亮	载机 GNSS 未定位
紫灯常亮	未收到载机 GNSS 数据
红灯闪烁	故障

接口定义

端口	脚位	定义	说明	
	1	GND		
	2	GND		
POWER	3	NC	供电电压 14~52V DC	
	4	Vin		
	5	Vin		
	1	5V		
	2	GND		
стц	3	T+	用于 GCU 设置、私有协议控制及输出高	
EIH	4	T-	清视频	
	5	R+		
	6	R-		
	1	GND	・ 善容 FASST SEHSS 等 S BUS1 制式	
S.BUS	2	5V		
	3	S.BUS	与 FASSTest 寺 S.BUS2 制式	
UART	1	GND	田干 GCU 固件升级 GCU 设置及私有协	
	2	UART_Rx		
	3	UART_Tx	以控制	
UART2	1	UART2_Tx		
	2	GND		
	3	5V		
	4	UART2_Rx		

Q→ GCU 所有的 5V 接口供电功率总和为 1.5W,请勿通过 GCU 向超过此功率的 设备供电,以免造成工作异常。

设置与固件升级

/ 使用前,务必确保GCU及吊舱的固件均已升级至最新版本,否则将影响使用。

/ 进行设置或升级固件前,请确保电脑已安装调试模块驱动软件。

- · 进行设置前,电脑设置需设置为固定 IP 地址,与 GCU 及相机处于同一网段, 且 IP 无冲突(GCU 默认 IP 地址为 192.168.144.121,相机默认 IP 地址为 192.168.144.108)。
- 固件升级过程中,请勿关闭电源,以免对设备造成损害。升级完成后,请重 启设备。
- 对于 Windows10 及以上版本的操作系统,首次运行 GCU 设置软件 GCU_Config 时需要赋予网络权限。

设置

- 1. 通过串口设置 GCU,使用调试模块将电脑与 GCU 的 UART 接口相连;通过网络设置 GCU,使用网口转换模块将电脑与 GCU 的 ETH 接口相连。
- 2. 将 GCU 与吊舱相连并上电,运行 GCU 设置软件 GCU_Config,选择 UDP 或 调试模块对应的 COM 口,点击"开始调试",软件会显示当前 GCU 设置。
- 3. 可在软件内对 GCU 进行设置。

Q 在文本框中输入新的参数后,点击回车键才会将新参数保存至 GCU,其余 设置无需点击回车键。

nglish	网络九里			C 110	20.00			
	Print OLD			3.003	юд			
GCU IP地址	默い	网关		反向 None マ 🔲	跟随	锁定	Mavlink	UDP -
子网掩码	远望	制P地址			俯拍	锁定	凝视	
相机IP地址			模式	None 👻				开始调试
+12:4				None -	<u><u><u></u></u></u>		回中	
エッショル			跟踪	None -	退出		跟踪	GCU版本
2005-200			俯仰	None		-		
第三路流			/m.p.t			6		吊舱型号
第四路流			940.05	None 🔻		-		
			变倍	None -	缩小	停止	放大	吊舱版本
	吊鮠数据		拍照录像	None -	灵像	空	拍照	
滚转	俯仰	偏航	画面切换	None -	调色	空	国中国	
	2010 M-10		夜视	None 👻	×		π	恢复默认
GNSS	2010122230							
滚转	俯仰	偏航	补光	None -	, x		π	校准
Acc_N	Acc_E	Acc_U	测距	None -	×		开	

1. 网络设置

GCU IP 地址 / 默认网关 / 子网掩码 / 远端 IP 地址
 可对 GCU 的网络参数进行设置,请确保修改后的网络参数不会导致 GCU 网络连接异常。

- 相机 IP 地址 填写当前吊舱相机的 IP 地址,GCU 会自动生成吊舱相机的视频流 地址。此处并非对相机 IP 地址进行设置。
- 2. 吊舱数据

显示当前吊舱的姿态角数据。

3. 载机数据

显示 GCU 当前所连接的载机惯导定位状态、姿态角与北东天向加速度。 4.S.BUS 设置

> 可对吊舱功能所映射的 S.BUS 通道及正反向进行设置,其中俯仰与偏航 为比例控制,其余功能为开关控制。

对于开关控制的通道,通道值进入[1000µs,1300µs]会触发一次低位 功能,进入[1300µs,1700µs]会触发一次中位功能,进入[1700µs, 2000µs]会触发一次高位功能,通道值在同一区间内变化则不会重复触 发。 模式

跟随:此模式下吊舱的偏航角与俯仰角均可控,无转动指令时吊舱指向 随载机旋转,俯仰角保持不变。

锁定:此模式下吊舱的偏航角与俯仰角均可控,无转动指令时会始终保 持当前姿态。

MAVlink: 可通过 MAVlink 协议对吊舱进行控制,此时其他 S.BUS 控制 功能失效。

俯拍:此模式下,吊舱俯仰轴会自动旋转至竖直向下进行拍摄。由跟随 模式进入俯拍模式时,偏航角始终随载机指向旋转且不可控;由其他模 式进入俯拍模式时,偏航角可控,无转动指令时会始终保持当前方向。 凝视:吊舱会自动旋转,使画面中心所指向的地理位置始终保持不变。 对于具有激光测距功能的吊舱,在进入凝视模式前开启测距会提高画面 中心的锁定精度。此功能在吊舱接收到有效载机惯导数据时才可使用。 回中:吊舱会自动旋转至各轴零位。

跟踪

触发该功能后,吊舱会自动跟踪目标,并使之处于画面中心。

● 俯仰 / 偏航

摇杆值对应吊舱俯仰 / 偏航转动速度。

变倍

通道值处于放大 / 缩小区间时,相机变焦倍率会持续变化,直至通道值 处于停止区间或相机处于最大 / 最小倍率。

● 拍照/录像

拍照命令会触发相机进行一次拍照;录像命令会触发相机循环切换开始 录像与停止录像。在录像过程中可以进行拍照,但不会停止录像。照片 与视频均存储于吊舱的 MicroSD 卡内。

● 画面切换

调色:对于具有热成像相机的吊舱,调色命令可以循环切换热成像图像 的调色盘模式。

画中画:对于具有多个相机的吊舱,此命令可在画中画、主图像与副图像之间循环切换。

夜视
 此模式下相机会切换至低照度模式以提高微光环境下的图像清晰度。

补光

对于具有激光照明功能的吊舱,此命令可开启 / 关闭照明功能,同时自动开启相机低照度模式。

▲ 吊舱所搭载激光照明模块属于 Class 3B 类非可见光激光器,在照明模块开 启状态下,严禁直接目视(≤12m)或使用光学仪器直接观察激光光束, 照明模块前方 20cm 内严禁放置易燃物体。

测距

对于具有测距功能的吊舱,此命令可开启 / 关闭测距功能。如吊舱接收 到有效载机惯导数据,可同步计算测距目标的地理坐标(经纬度与海拔 高度)。

5. 恢复默认

点击可将 GCU 设置恢复至出厂状态。

6. 校准

点击可对吊舱进行校准,校准前请确保吊舱处于静止状态(无需回中) 直至校准完成。

A 未接收到有效载机惯导数据时,由于地球自转影响,校准成功的吊舱偏航 轴会存在每小时约 15°的漂移,属正常现象,无需再次校准。为保证吊舱姿 态准确无飘移,需向吊舱传输有效载机惯导数据,通常情况下,需要载机 GNSS 定位有效。

固件升级

- 1. 将 GCU 上电,使用调试模块将电脑与 GCU 的 UART 接口相连。
- 2. 运行 GCU 升级软件 FreeFlightIAP,选择调试模块对应的 COM 口。
- 3. 点击 "browser" 选择固件文件,而后点击 "download",等待 GCU 完成升级。

application file		browse
serial port	download	cancel

附录1参数表

总体参数	
产品名称	GCU
尺寸	45.4 x 40 x 13.5mm
重量	18.6g
工作电压	14 ~ 53 VDC
功耗	1.8W
环境参数	
工作环境温度	-20°C~ 60°C
储存环境温度	-20°C~ 60°C
工作环境湿度	≤ 85%RH(非冷凝)

附录 2 外形尺寸

▲ 请选用合适的螺丝固定 GCU。螺丝过短可能无法可靠固定 GCU,螺丝过长可能会对 GCU 造成损伤。

/ GCU 工作时会有一定的发热,请确保设备工作时具有良好的散热。

附录 3 MAVLink 配置说明

ArduPilot

SERIAL1	
SERIAL1_BAUD	115
SERIAL1_OPTIONS	1024
SERIAL1_PROTOCOL	2
SR1	
SR1_ADSB	0 Hz
SR1_EXIT_STAT	0 Hz
SR1_EXTRA1	0 Hz
SR1_EXTRA2	0 Hz
SR1_EXTRA3	0 Hz
SR1_PARAMS	0 Hz
SR1_POSITION	0 Hz
SR1_RAW_CTRL	0 Hz
SR1_RAW_SENS	0 Hz
SR1_RC_CHAN	0 Hz
MNT1	
MNT1_TYPE	4 (Gremsy) / 6 (SToRM32 Mavlink)
RC1	
RC1_OPTOPN	213 (MOUNT1_PITCH)
RC2	
RC2_OPTOPN	214 (MOUNT1_YAW)
RC3	
RC3_OPTOPN	163 (MOUNT1_LOCK)
CAM	
CAM_TRIGG_TYPE	3 (Mount)

MNT1_TYPE 推荐设置为 4,此时 MNT1_ROLL_MAX、MNT1_ROLL_MIN、MNT1_PITCH_MAX、MNT1_PITCH_MIN、MNT1_YAW_MAX、MNT1_YAW_MIN 会根据吊舱上报数据自动设置。MNT1_TYPE 设置为 6 时,需要手动设置角度极限。

Q, RC1~RC3 仅为示例通道号,可根据实际情况自行定义通道号。

PX4

MAVLink	
MAV_1_CONFIG	TELEM2
MAV_1_MODE	Custom / Gimbal
MAV_1_RATE	115200 B/s
Serial	
SER_TEL2_BAUD	115200 8N1
Mount	
MNT_MAIN_PITCH	AUX1
MNT_MAIN_YAW	AUX2
MNT_MODE_IN	Auto (RC and Mavlink Gimbal)
MNT_MODE_OUT	MAVLink gimbal protocol v2
Camera Setup	
Trigger mode	Distance based, on command (Survey mode)
Trigger interface	MAVLink (forward via MAV_CMD_IMAGE_START_
ingger interface	CAPTURE)

🔍 MAV_1_MODE 推荐使用 Custom。

- Q→ AUX1、AUX2 仅为示例通道号,可根据实际情况自行定义通道号。进一步使用还需在 RC Map 中进行相应的映射。
- [**Q**,,]
- 触发模式仅作为示例,可根据实际情况进行修改。

附录 4 MAVlink 通信流程

GCU 收到飞控心跳包,并识别到飞控 SYSID 与 COMPID 后,触发下列动作:
1. GCU 主动发送 MAVLINK_MSG_ID_HEARTBEAT 0 数据包,频率为 2Hz。
2. GCU 以 1Hz 频率依次请求以下数据包,飞控将这些数据填入 MAVLINK_ MSG_ID_COMMAND_LONG 76 数据包并回传直至请求完成: MAVLINK_MSG_ID_EKF_STATUS_REPORT 193 (PX4 无此数据包); MAVLINK_MSG_ID_GLOBAL_POSITION_INT 33; MAVLINK_MSG_ID_SCALED_IMU 26; MAVLINK_MSG_ID_SYSTEM_TIME 2; MAVLINK_MSG_ID_RC_CHANNELS 65; MAVLINK_MSG_ID_CAMERA_TRIGGER 112 (APM 无此数据包); MAVLINK_MSG_ID_CAMERA_TRIGGER 112 (APM 无此数据包);
MAVLINK_MSG_ID_GIMBAL_DEVICE_SET_ATTITUDE 284 (APM 无此数据包);
2. NL L数据培训的完成, BR的工艺工作时, CCLU客主动先送 MAVLINK(MSG)

- 以上数据接收完成,且吊舱正常工作时,GCU将主动发送 MAVLINK_MSG_ ID_GIMBAL_DEVICE_ATTITUDE_STATUS 285 数据包,频率为 100Hz。
- 4. 一般情况下, 飞控会主动请求 MAVLINK_MSG_ID_GIMBAL_DEVICE_ INFORMATION 283 数据包, 此包 GCU 不会主动发送。