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ABSTRACT

Major public surface rail station has in the paseaaly been concerned and can be again the plac@exfpected event like
contaminant release during an attack. In suchtgituaemergency response efforts need to be opgnizhe critical questions are:
Where is the emission point? How much material retesased?

Accurate estimation of the source term is essetgiahanage the emergency planning and mitigateecpeces inside the rail
station and in urban vicinity. One solution is tdegrate the observed data at sensors with a pikedimodel to provide
probabilistic estimates of the unknown source tparameters. In such semi-confined volumes with ma@penings and obstacles,
flow streamlines and turbulence fields shows comgatterns in and between halls, ticketing rooniatfgrms...etc. High-
resolution CFD simulations with external meteoradag/street scale flow forcing (and possibly int@rwentilation forcing) are
required for the prediction of the toxic cloud neoti The inverse problem is then solved by a samplinpredictive simulations
guided by statistical comparisons with measured.dBlis approach uses Bayesian Inference with agtichsampling based on
Markov chain (MCMC). The results of the flow anadysnay trigger the location of permanent or mobliégection systems. The
event reconstruction when performed indicates thbability distribution functions of the source bgiat a particular location with
a release rate.

This paper presents firstly briefly the numericathodology selected for the source event recont&ructhen, an application case
on the railway station Gare de Lyon in Paris isadedl with a description of the complex flows arming toxic release modeling
which have been used for the source term recongnuesting.

INTRODUCTION

Toxic gas release in confined public area represené the fearest event for the authorities. Whieh sn accident
occurs, the real time following of the concentratitelds resulting from the release would be exgbmnvaluable
information as support for emergency actions arphichevaluation inside the area itself and itanifigi

The main objective of this project is to develop ewent reconstruction methodology to recover therc®
parameters. The study aims to determine the latatiol mass flow rate of the toxic release in ainedfarea.

The railway station Gare de Lyon in Paris has kssbected as a pilot for the performance testing.

The aimed analysis is challenging in such a condiion because of the complex flows patterns insiigestation
and in the close surrounding. Then, the sensor arktwhich is essential to the source retrieval faes toxic
airborne concentration at few places and with $jppettime samplings. The measurements as the madeiticlude
deviation with natural phenomena. Indded, unstaadyeorological conditions, train movements, opgfulosed
doors, which are not systematically known, add cameévents and turbulence to the momentum quanttiesthe
boundary conditions.

The general principle of the methodology is to deugpe concentration data recorded at the sendwrorie with
appropriate algorithm for source term determinatiod 3D dispersion modelling. Regarding the maimneal
difficulties of the project, the modelling must élnto account accurately the complex geometryhef railway
station and the source event reconstruction mupelfermed fastly by using the available conceidratecordings.
The proposed technique used to retrieve the sqa@meters is based the Bayesian inference prinoipipled with
MCMC stochastic sampling. Such objectives have djréeen studied in downtown or on opened industitalbut
it needs to be adapted to the confined issue.

The project is divided in three phases: a firstgghdevoted to internal and external flow modelthg, second phase
concerns the development of suitable algorithms #med last phase consists in the performance tesifnthe
methodology for different kind of releases. Thisp@a addresses the issue of the development of ecesou
determination algorithm in phase 1 and 2 of thgguto

GENERAL DESCRIPTION

In order to identify the location and compute tlheacteristics of the source event, a probabileproach has been
selected. Bayesian inference approach is partigudaited for application where scarce and noisy da¢ available.
The source event reconstruction is firstly basedamindfield database and a concentration databaieby unit
mass flow rate from all potential sources in thefeceed area (experience, best place for the attgcRhe advection-
diffusion equation is supposed to be linear withdensity effect or chemical reaction.The forwardwdation run for
unit source strength from the locations of the pdistribution give concentration values at serlsgations which
are stored in a database. The precalculated traiusfetions between sources and sensors can deirusieel inverse
process.



A high toxic concentration detected at a sensdhénconfined area (threshold detection) triggeessiburce retrieval
which starts by an optimized research of the relgasameters (location, mass flow rate and reldasstion) with a
Monte Carlo Markov chain (Chow F.K., B. Kosovic and.SChan, 2006). The release parameters (locatiassm
flow rate, starting time...) are determined and loarused in a forward dispersion modelling. Thé tieee modelling
of this dispersion based on real time weather datald provide valuable information for the emergemptanning
inside the station and in the nearby surrounding.

The internal/external steady flows are modeled BRFB code and stored in a database. The 3D CFD (Cautignal
Fluid Dynamic) model Fluidyn-PANEPR (Mazzoldi At a&., 2008) has been chosen, to simulate the 3Brread
wind field pattern and the internal flows of thélway station. Taking into account the details lo¢ tinstallations
(Hill R;, et al., 2007), this model solves the Nawv&tokes equations including mass, momentum anbagoy
conservation, state law and equations for advediffnsion. A K- model is used for turbulence simulations. This
model is used in Eulerian mode to compute windiffgttern and the species dispersion.

The advantage of this probabilistic approach isriBustness since it is based on a comparison betlee
concentration fields resulting from the most plalesaccidental emission release locations andiraal observations
from a sensor network. In addition, CFD calculagworables a reliable simulation of wind flow and eisgion around
complex geometries, taking into account turbulesffects thus giving the proper relationship betweencentration
fields at short range and source term value (Neusna2006).

RECONSTRUCTION PROBLEM FORMULATION
Bayesian inference
A probabilistic theory like Bayesian inference in $@murce event reconstruction enables to computdikbkest
parameters on the sensors data basis (Keats &.,lken and E. Yee, 2006).The posterior probabidityg conditional
probability which is the link between the hypotlsesind the concentration at sensors and the pfamniation.
The general formulation for conditionnal probapils
P(X|Y,Z) 1)

- X:proposal

- Y :conditionnal information

- Z:context

By considering the vector m of parameters whicluides the release caracteristics:

m= (loc,q_t,,.c)
Where loc is the release location, q is the mass fhte, §, is the turn on time and d is the release durafitme
source reconstruction algorithm computes prolshdénsity function which after a statistical arsdyprovides the
most probable values.
If the Bayesian theory is applied to the source edetermination, the posterior probability for tmevector with the
concentration C at sensors and the prior data E

P(mIE)P(Clm, E)
E(CI|E) 2)
- P[C |E] is a normalization constant. The posterior prolitgbfunction is proportional to the product of the
prior probability andP (€ |, E ):

E(ml|c,E) =

P(m|C,E)  B(m|E)P(Clm E) 3)

- P[Clm, E] is the probablity to get the C concentration mead at sensors for a selected m vector. This
probability estimates the deviation between the @ceatration recoreded at sensors and thg; Godeled
concentration provides by the atmospheric dispersiodel for the m set of parameters. This deviaitictudes
the measurements and numeric models errors. By hggist the deviation between the measured contientra
at i detector and the real concentration followsoamal law distribution. The same statement is dimmethe
theorical concentration at | detector and the ocemcentration. The two noise components are sugpinsget
null average andc andocmeg Variances.

The probability that the measured concentratiorfdoeseen by the dispersion model for the m vector loe
computed by the following relation:
1 (C'._ - C,,,DL._;(HTJ)
P(C|m,E) x Exp > Z L =

' 4)

P[m |E] is the prior probability for the m set of paranmstdn this project, this probablity is set as astant

that means there is no most probable release isamee than in another.

P(m|E) = constant (5)



Nevertheless, it is obvious that the m parametersiefined in a range between 0 and the maximéstieavalue
(for instance the maximal flow rate based on theeess caracteristics in the hazard study). Thes,sitipposed
that the release can't occur in a building andpttebability is set at O inside buildings.

- P[m IC, Ej is the posterior probability for the m vector bdem the measured concentrations at sensors and
the parameter space E. The relation for the prdibabensity function (PDF) is:

CL = C"mn:.;(r ) 1
P(m|C,E) ot Ex l—izg

B ¢ 3 JC"‘!GL::
(6)

Sampling procedure by Markov Chain
The combinaison of the Bayesian inference technaquka sampling method as the MCMC (Monte Carlo Markov
Chain) enables a reliable release parameters detion.
Indeed, the PDF is a huge space which must be sdmpl classical Monte Carlo sampling is not an appabted
methodology for a multidimensional function. Ifstéampling is done with a Markov chain which inésdhe PDF
value, the method is highly efficient. There iswaste in time in exploring non useful parts of fa@ameters space
which have low contribution in the PDF.

Various algorithms exist for MCMC samplings. In thregent study for a set of m parametdzd, g, tons d) the
posterior probability is computed by the Metropdalligorithm. The Markov chains are initialized bkitey samples
from the prior distribution (building excluded, rsalow rate range...). The stored concentratioms lwa rescaled
depending on the proposed source release ratepfantiaular source location. In this algorithme tandidate state is
sampled from a proposal distribution at each itenaénd it is accepted if it improves the PDF vatfi¢he previous
set. If the comparison is worse, the proposal isamtomatically rejected. The sample is comparat wirandomly
chosen value to know whether it is accepted or Ifiogjected, the next point is selected basedhenlast accepted
value. Each new part of the Markov chaipaepends on the previous paitmThe MCMC process is repeated for a
large number of iteration (20000 to 40000 iteragjoand generates a point series as a chain. Xpisceed that the

distribution of these proposals follows the tarEe[tmw, E] distribution. Based on the MCMC results, a statistica
analysis (histogram, mean value, standard deviatjoten be done for each parameter.

RAILWAY STATION CASE STUDY

In case of an attack in a complex railway statiiee IGare de Lyon in Paris with buildings in theirity and
concentration measurements at few locations, vetriee contaminant source location and strengéhadballenging
problem. The domain size is 4km*4km and was subéidiinto 782 201cells with an unstructured meste ddlls
inside the station have been refined with a streckimesh.

For the present case, eleven sensors have beenougedorm the source reconstruction. Only halfref platforms
are taken by a train.
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Figure 2: Sensor locations
reconstruction testing



In this study, 63 different release locations hesrbselected to build the concentration database.
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Figure 3 : Concentration plots for a unit puff from all potential sources at sensor n°1 (case 100°N/w=1m/s)

Before testing the methodology of the source recooson, four forced wind conditions have been niedeby
Fluidyn-PANEPR to produce steady flows inside/owsitle station ([100°N;1m/s and 4.5m/s]; [300°N; 1wl
4.5m/s)).

Initially, different releases from 5 locations metdomain with 1 kg/s continous mass flow rate Haaen run for the
4 wind conditions.

.\ﬁ‘,‘

(@) (b)
Figure 4: (a) Internal and external flow pattern ard (b) Horizontal concentration contours generatedn and around the
railway station by forward simulation for a synthetic case (source 1)
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Figure 5: 3D plumes in and around generated in andround the railway station by forward simulation for the 5 synthetic
cases simultaneously at different times
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Figure 6: Time to reach (a) detection threshold cazentration (1 ppb) — (b) 90% of maximum concentratn at sensor (h)
(case 300°N — W=4.5m/s)
The above results give valuable information ontiime transfer of toxic compound from different soeitocations (1
kg/s continuous release). It shows that the detedtireshold concentration is reached before 24hmutrthe longer
time to reach 90% of the maximum concentrationaésenthan 2 hours. Even for moderate meteorologizatlitions,
the time transfer from the release point can blyreng in some areas of the station and coul@ gidditional time
for emergency planning in case of a quick releasameters determination.

CONCLUSIONS

A stochastic event reconstruction method for chamar biological agent dispersion is presented. rAbpbility
model is suggested to take into account the corat@nt fluctuations and the zero concentration messents that
can be recorded from a sensor network due to thigsketection limit.

The proposed method is based on Bayesian infereitheMarkov Chain Monte-Carlo sampling.The complexaflo
fileds a 3D confined environnement need a spedfiproach with an high fidelity CFD code. In the mve
reconstruction, the dispersion models are typicagcuted for many times within the MCMC algorithnoimer to
samplpe the posterior distribution. A forward CFDd®bused is not adapted to an emergency responseide of
the important time computation which constitureeal burden. That is why, a concentration databdsehwstore the
unit transfer functions between potential sourcebssensors network is build in order to get sigaifit improvement
in computational cost and a possible fast respopseational action.

Early detection of the biological or chemical agewith quick and accurate reconstruction of theelision events is
critical in organizing an emergency response. Gheerelease event is characterized according thereéitions at
sensors, forward projections can be performed &byaa the extent of exposure to the contamination.

The developed MCMC algorithm framework will be nasted on the synthetic cases modeled by a CFD natie i
railway station. The expected performances woutdigee elements for pratical applications in enviremt and for a
emergency numerical platform development.
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