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ABSTRACT

This document provides supplementary information for “High-speed multi-modal extended depth-of-field microscopy with an

electrically tunable lens”.
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Supporting Information S1. Transport of intensity diffraction tomography and partially
coherent transfer functions

In the basic theory of optical diffraction tomography (ODT), the physical quantity describing a thick

3D sample is termed as scattering potential f (r), which is a function of the 3D distribution of complex

refractive index (RI) n(r) of the object1:

f (r) = k2
0
[
n2

0 −n2 (r)
]

(S1)

where r = (x,y,z) is the spatial coordinate, k0 = 2π/λ0 is the wave vector, with λ0 being the free-space

wavelength, while n(r) = nRe (r)+ inIm (r) and n0 are the RI of the specimen and its surrounding medium,

correspondingly. The real part of the RI, nRe (r) describes how phase delays accumulate as light passes

through the sample, while the imaginary part, nIm (r), describes absorption. Since the RI of the object is

different from that of the surrounding medium, the light propagation and scattering obey the following

inhomogeneous wave equation:[
∇2 + k2

m
]
U (r) =− f (r)U (r) (S2)

Obviously, the scattering potential outside the sample is 0. In fact, the scattering potential of the sample

is equivalent to the complex RI distribution, so f (r) is often called the object function. The total field

U (r) can be written as the superposition of the incident field Uin (r), and the scattered field Us (r):

U (r) =Uin (r)+Us (r) (S3)

while the incident (un-scattered) field satisfies the Helmholtz equation in a homogeneous medium:[
∇2 + k2

m
]
Uin (r) = 0 (S4)

The scattered field satisfies the following equation:(
∇2 + k2

m
)

Us (r) =− f (r)U (r) (S5)

The partial differential equation expressed in Eq. S5 cannot be directly solved, but based on Green’s

method, its solution can be expressed as the following integral form:

Us (r) =
∫

G
(
r− r′

)
f
(
r′
)

U
(
r′
)

dr′ =
[

f
(
r′
)

U
(
r′
)]

⊗G(r) (S6)

where G(r) is the 3D Green’s function corresponding to the Helmholtz equation in a homogeneous

medium, which is an outgoing spherical wave originating from the point of observation:

Us (r) =
∫

G
(
r− r′

)
f
(
r′
)

Uin
(
r′
)

dr′+
∫

G
(
r− r′

)
f
(
r′
)

Us
(
r′
)

dr′ (S7)
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However, if we assume that the light is scattered only once by the object, i.e., the light is deflected only

by a single interaction, a linear relation between the resultant first-order scattered field, Us1 (r), and the

scattering potential of the object can be obtained:

Us1 (r) =
∫

h
(
r− r′

)
f
(
r′
)

Uin
(
r′
)

dr′ (S8)

where h(r) is the 3D coherent point spread function (PSF). In order to simplify the derivation, we intro-

duce the first-order Born approximation Us1 (r)≈Us (r), the total field can be expressed as:

U (r) =Uin (r)+Us (r)

=Uin (r)+
∫

h
(
r− r′

)
f
(
r′
)

Uin
(
r′
)

dr′

=
∫

h
(
r− r′

)
T
(
r′
)

Uin
(
r′
)

dr′

(S9)

where T (r) = 1+ f (r) = 1+ k2
0
[
n2

0 −n2 (r)
]

is defined as the 3D complex transmittance function of the

object. Based on this complex transmittance expression, 3D coherent imaging and 2D coherent imaging

can be formally unified. When a 3D object is illuminated by a partially coherent field with the cross-

spectral density (CSD) defined as WS (r1,r2), the CSD of the transmitted field can be expressed as:

W0 (r1,r2) =WS (r1,r2)T (r1)T ∗ (r2) (S10)

According to Van Cittert-Zernike theorem, the CSD of the illumination before reaching the object can be

written as:

WS (r1,r2) =WS (r1 − r2) =
∫

S (u)e j2πu(r1−r2)du (S11)

Note that here u represents the 3D frequency vector. S (u) refers to the incoherent generalized source

defined on the Eward sphere (in the 6f imaging system the source is located at the conjugated plane of

the objective pupil):

S (µµµ,η) = S (µµµ)δ

η −

√(
1
λ

)2

−|µµµ|2
 (S12)

After 6D Fourier transforms, the transmitted light field needs to multiply the 3D coherent transfer function

H (u) twice at the pupil plane, and then the CSD in the image space can be obtained after inverse Fourier

transform:

WI (r1,r2) =
∫∫

Ŵo (u1,u2)H (u1)H∗ (u2)e j2π(u1r1+u2r2)du1du2 (S13)
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in which H (u1)H∗ (u2) is the 3D mutual coherent transfer function. Equivalently, it can also be written

in the convolution form in the spatial domain:

WI (r1,r2) =
∫∫

Wo
(
r1

′,r2
′)h

(
r1 − r1

′)h∗
(
r2 − r2

′)dr1
′dr2

′ (S14)

where h(r1)h∗ (r2) is the 3D mutual PSF. The image intensity that we can capture is given by the values

on the ‘diagonal’ of the CSD function:

I (r) =WI (r,r) =
∫∫

WS (r1,r2)T (r1)T ∗ (r2)h(r− r1)h∗ (r− r2)dr1dr2 (S15)

This formula can be further simplified by substituting Eq. S11 into Eq. S15:

I (r) =
∫

S (u)
∣∣∣∣∫ T

(
r′
)

h
(
r− r′

)
e j2πur′dr′

∣∣∣∣2du ≡
∫

S (u) Iu (r)du (S16)

Equation S16 suggests that the final intensity that can be captured at the image plane can be regarded as

the intensity (incoherence) superposition of coherent partial images Iu (r) arising from all points over the

incoherent generalized source function. Substituting Eq. S11 into Eq. S15 and rewriting it in the form of

Fourier integral gives:

I (r) =
∫∫∫

S (u) T̂ (u1) T̂ ∗ (u2)H (u+u1)H∗ (u+u2)e j2πr(u1−u2)du1du2du (S17)

Separating the contribution of the specimen and imaging system leads to the notion of the 3D transmission

cross-coefficient (TCC)2–4:

TCC (u1,u2) =
∫

S (u)H (u+u1)H∗ (u+u2)du (S18)

Noted that the 3D TCC is actually a 6D function. Based on the 3D TCC, Eq. S17 can be written as:

I (r) =
∫∫

T̂ (u1) T̂ ∗ (u2)TCC (u1,u2)e j2πr(u1−u2)du1du2 (S19)

The above expressions are similar to those derived from 2D partial coherence imaging, except that the

dimension of the TCC increases from four to six. It can be calculated from the overlapping region of

the generalized source and two shifted generalized apertures (three hemispherical shells). However, the

calculation requires a prohibitively large computation time for the 6D integral of the TCC. Considering

the real part and the imaginary part of the 3D complex transmission function separately, i.e., the phase

component P(r) and the absorption component A(r) (note that the real part of the 3D object function

corresponds to the phase component, instead of absorption as in the 2D case):

T (r) = 1+ f (r) = 1+ k2
0
[
n2

0 −n2 (r)
]
= 1+P(r)+ jA(r) (S20)
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Under the first-order Born approximation, the self-interference of the scattered light can be neglected,

and the mutual spectrum of the object can be approximated as:

T̂ (u1) T̂ ∗ (u2) = δ (u1)δ (u2)+δ (u2)
[
P̂(u1)+ jÂ(u1)

]
+δ (u1)

[
P̂(u2)− jÂ(u2)

]
(S21)

Substituting Eq. S21 into Eq. S19:

I (r) = TCC (0,0)+2Re
{∫

TCC (u,0)
[
P̂(u)+ jÂ(u)

]
e j2πrudu

}
(S22)

where TCC (u,0) is the linear part of the TCC, which is the 3D WOTF:

WOT F (u) = TCC (u,0) =
∫

S
(
u′)H

(
u′+u

)
H∗ (u′)du′ (S23)

Taking Fourier transform on Eq. S22, and separating the contributions of phase component P(r) and

absorption component A(r) gives:

Î (u) = Bδ (u)+HA (u) Â(u)+HP (u) P̂(u) (S24)

where B is the background intensity. It now becomes obvious that the image contrast due to the absorption

and phase are decoupled and linear. Because the intensity is always real, the real and even component of

WOT F (u) corresponds to the partially coherent 3D AOTF HA (u), and the imaginary and odd component

of WOT F (u) corresponds to the 3D POTF HP (u) of the object5–7:

HA (u) =WOT F (u)+WOT F∗ (−u) (S25)

HP (u) =WOT F (u)−WOT F∗ (−u) (S26)
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Supporting Information S2. OTF analysis for different illumination schemes

As described in the manuscript, the annular illumination scheme is adopted. First, we further explain

the importance of matched illumination condition from the scanning absorption optical transfer function

(sAOTF). As shown in Figs. S1a1-a4, the cut-off frequency of sAOTF is highly related to the numerical

aperture of illumination, i.e., the coherent parameter S. Figure S1a5 clearly depicts the 1D line profiles

of different sAOTF under different S. We can draw conclusions that the matched illumination condition

is critical for spatial resolution, i.e., up to the incoherent diffraction limit. Moreover, the annulus width

will influence the imaging contrast, which can be deduced from the transfer functions. As discussed in

the manuscript, we adopted annular illumination rather than a circular illumination scheme for enhancing

the imaging contrast, while the annular width should be chosen appropriately according to the sAOTF.

As shown in Figs. S1b1-b4, if the annulus is too wide, the imaging contrast cannot be strongly boosted,

while if the annulus is too narrow, the transfer function is abrupt at certain high frequencies. Therefore,

we have to choose the appropriate annulus width experimentally, and we have chosen ∆S = 0.2 in our

previous experiments.

S=1S=0.8S=0.6S=0.4

ΔS

ΔS=0.4 ΔS=0.2 ΔS=0.05ΔS=0.8

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

Figure S1. Annular illumination scheme under different numerical aperture and annulus width. a1-a4, The sAOTFs are
shown respectively under S = 0.4,0.6,0.8 and 1 when the source is a narrow annulus. a5, The corresponding 1D line profiles
under different S. b1-b4, The sAOTFs are shown respectively under matched illumination conditions with different annulus
widths ∆S = 0.8,0.4,0.2,0.05. b5, The corresponding 1D line profiles under different annulus widths. The spatial frequency
coordinate is normalized against the coherent resolution limit NAob j/λ . The normalized sAOTF value is displayed in log
format.
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Supporting Information S3. Relation to the Fourier Slice Theorem

The classical version of the Fourier Slice Theorem states that the 1D slice of a 2D function’s Fourier spec-

trum is the Fourier transform of an orthographic integral projection of the 2D function. The projection

and slicing geometry are illustrated in Fig. S2a. This is the basic principle of the conventional computed

tomography (CT). We first consider a 2D function f (x,y), and its projection can be represented as the

integration along a straight line l (s,θ):

R f (s,θ) =
∫∫

f (x,y)δ (xcosθ + ysinθ − s)dxdy (S27)

The line equation l (s,θ) can be expressed as:

xcosθ + ysinθ = s (S28)

where s is the distance from the origin to the line, and θ stands for the positive angle from the line to

the y-axis (or the positive angle from the projection plane to the x-axis). When θ and s are fixed, l (s,θ)
represents a straight line with the angle θ between the y-axis and the distance s from the origin. The

projection of f (x,y) onto the line can be obtained by Eq. S27.

As the central theorem in classical CT, the Fourier slice theorem connects the projection data to the

original function in Fourier space, which allows efficient CT reconstructions with FFT. Based on the

definition of Fourier transform and variable substitution, it can be proven that the 1D Fourier transform

R̂ f (γ,θ) (γ corresponding to the spatial frequency s coordinate) of the 1D projection at angle θ is dis-

tributed along a straight line at the same angle in the Fourier space of the 2D object f (x,y).

R̂ f (γ,θ) = f̂ (u,v)
∣∣∣u=γ cosθ
v=γ sinθ = f̂ (γ cosθ ,γ sinθ) (S29)

where (γ,θ) is the polar coordinates in the frequency domain.

We extend the 2D Fourier Slice Theorem to 3D. The 3D point spread function and optical transfer

function are Fourier transform pairs. The 2D slice of a 3D OTF is the 2D Fourier transform of an

orthographic integral projection of the 3D PSF. In this paper, the scanning 2D PSF is a vertical projection

of 3D PSF, and its corresponding 2D Fourier spectrum is the middle slice of 3D OTF, as shown in Fig.

S2b.

Moreover, the Fourier Slice Theorem is especially essential for fluorescent imaging. Traditional CT

techniques usually use coherent light sources (such as lasers) to illuminate the object to obtain a specific

direction of projection under transmissive imaging, and the projection intensity is a slice of the Fourier

spectrum. The ODT techniques take into account diffraction effects, where the projection extends from a

slice in the spectrum to a sphere. In order to recover complete 3D refractive index, it is usually necessary

to use coherent light sources. The object and illumination beam must relatively rotate to each other
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to collect multi-directional projections, and 3D reconstruction can only be performed on samples with

absorption or scattering characteristics. However, fluorescent imaging methods are mainly based on the

principles of axial scanning and optical sectioning to reconstruct 3D objects, and there is currently a lack

of methods to explain 3D reconstruction from the perspective of CT. Our recently published work8 has

found that using an annular aperture can modulate the PSF of the imaging system into a Bessel beam,

keeping the PSF invariable in the axial direction and achieving the EDOF imaging. The incoherent

Fourier Slice Theorem is derived, and it has found that the 2D intensity signal detected under the annular

aperture is equal to a 2D slice in the 3D object spectrum, revealing that the annular aperture modulation

can apply CT technique to incoherent fluorescent wide-field microscopy. The use of a fast-scanning ETL

for EDOF imaging can be combined with the PALFM technique in order to replace the annular aperture,

which is a promising work in the future.
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1D Fourier 
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2D Fourier 
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Rf(s,θ)

l(s,θ)

Figure S2. Generalization of the Fourier Slice Theorem. a, classical Fourier Slice Theorem, the 1D slice of a 2D function’s
Fourier spectrum is the Fourier transform of an orthographic integral projection of the 2D function. b, generalized Fourier
slice theorem for OTF, the 2D slice of a 3D OTF is the 2D Fourier transform of an orthographic integral projection of the 3D
PSF.
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Supporting Information S4. Telecentric defocusing with an ETL

Within the scope of scalar diffraction, free-space propagation is described by means of a linear shift-

invariant system. Given the complex amplitude u0 (x,y) of a wave field across the plane z = 0, the

complex amplitude uz (x,y) across a parallel plane in a distance z is obtained from the convolution with

the impulse response of propagation9:

uz (x,y) = u0 (x,y)⊗hz (x,y) (S30)

According to the convolution theorem, Eq. S30 turns into a modulation in the Fourier domain (u,v) and

yields:

u(u,v) = u0 (u,v) ·Hz (u,v) (S31)

where the Hz (u,v) is a Fourier transform of hz (x,y). The corresponding transfer function is a phasor with

unit amplitude:

Hz (u,v) = exp
[
−iπλ z

(
u2 + v2)] (S32)

where λ = λ0/n, λ0 is the wavelength and n is the refractive index of the immersion medium. According

to the manuscript, the 4f system presented in Fig. 3 may be used to generate propagated representations

uz (x,y) of the initial wave field u0 (x,y) across the sensor plane, where the index z refers to the associated

propagation distance along the optical axis. In the following, the corresponding complex transmittance

tl (µ,ξ ) to be generated by the electrically tunable lens (ETL) shall be investigated. The analysis is based

on the transfer function given by Eq. S32 and the geometric parameters of the setup, such as the focal

length of the lenses. Considering the Fourier transform property of the first lens, the complex amplitude

of the wave field across the (µ,ξ ) plane is proportional to the Fourier transform of the complex amplitude

incident in the (u,v) plane:

u(µ,ξ ) =
1

iλ f
·F {u(x,y)}

(
µ

λ f
,

ξ
λ f

)
(S33)

The operator F denotes the Fourier transform and f is the focal length of the Fourier lenses. From Eq.

S33, the substitution (u,v) =
(

µ · (λ f )−1,ξ · (λ f )−1
)

is obtained.

Considering the Fourier transform property of the 4f system, the variation of ETL’s focal power located

at the Fourier plane is equivalent to adding a quadratic phase modulation10–12:

tl (µ,ξ ) = exp
[
− iπ

λ fe f f

(
µ2 +ξ 2)] (S34)

where (µ,ξ ) is the spatial coordinates in the Fourier plane of the 4f system, fe f f is the effective focal
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length of ETL controlled by current.

fe f f =
fET L fOL

fET L + fOL −d
(S35)

where fOL is the focal length of offset lens (OL), d is the axial distance between the two lenses. Note

here we consider the composite lens as ‘thin’ for simplicity, because d is very small and fe f f is much

larger than the thickness of the two lenses. Comparing Eq. S20 with Eq. S32, we can see the tl (µ,ξ )
share the same format as the propagation transfer function. With the use of the connection between the

frequency coordinates in the Fourier domain and the spatial coordinates in the Fourier plane of the 4f

setup (u,v) =
(

µ · (λ f )−1,ξ · (λ f )−1
)

, the relationship between the focal length variations versus the

propagation distances can be established:

∆z =− 1
M2

n · f 2

fe f f
(S36)

where M is the magnification of the objective lens, and f is the focal length of two Fourier lenses. Since

fe f f can be electronically controlled, the defocus distance ∆z can be easily adjusted.

Generally, the scan range is proportional to the square of the focal length of the relay lenses f . How-

ever, there is an upper limit to f . To maintain the full NA of the detection lens, the ratio of the focal

lengths of the relay lens f and the tube lens fT L must not be larger than the ratio of the aperture of the

ETL dET L and the diameter of the BFP of the detection lens dBFP, i.e.,

f ⩽ fT L ·
dET L

dBFP
(S37)
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Supporting Information S5. Richardson-Lucy deconvolution with the total variation (TV)
regularization

Although the rapid focus scanning collects all focus information, the captured single-shot image is still

degraded by out-of-focus light of each layer and by Poisson noise due to photon-limited detection, es-

pecially under rapid exposure conditions. While the deconvolution method tends to amplify noise, the

usage of image priors-based regularization constraints has to be applied to reduce the noise sensitivity.

Here, we combine the iterative Richardson-Lucy deconvolution algorithm13–15, which computes maxi-

mum likelihood estimation adapted to Poisson statistics, with a regularization constraint based on Total

Variation (RL-TV) to suppress unstable oscillations while preserving object edges.

Light emission is well-approximated by a Poisson process, and so is the 3D image. If an object o is

observed as an image i through an optical system with a PSF h and degraded by a Poisson noise, we can

write the likelihood as:

p(i|o) = Π
x


[
(h⊗o)(x)i(x)e−(h⊗o)(x)

]
i(x)!

 (S38)

Maximizing this probability with respect to o and using a multiplicative gradient-based algorithm

leads to the RL algorithm:

ok+1 (x) =
{[

i(x)
(ok ⊗h)(x)

⊗h(−x)
]}

×ok (x) (S39)

The non-regularized RL algorithm minimizes the functional − log p(i|o) = J1 (o) (up to an additive

constant), giving the maximum likelihood estimation:

J1 (o) = ∑
x
(−i(x) log [(o⊗h)(x)]+(o⊗h)(x)) (S40)

We introduce a priori constraint on the object by adding to the energy J1, a regularization term Jreg,

defined by the TV of the solution o,

Jreg (o) = εTV ∑
s
|∇o(x)| (S41)

The total functional to be minimized is then:

J1 (o)+ Jreg (o) = ∑
x
(−i(x) log [(o⊗h)(x)]+(o⊗h)(x))+ εTV ∑

x
|∇o(x)| (S42)

Using the L1 norm over ∇o rather than the L2 norm allows for the recovery of a smooth solution with

sharp edges. It can be shown that the smoothing process introduced by Jreg acts only in the direction

tangential to the image level lines and not in the orthogonal direction, so that edges are preserved. The
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derivative of Jreg with respect to o is a nonlinear term ∂
∂oJreg = −εTV div

(
∇ok (x)
|∇ok (x)|

)
. We minimize Eq.

S42 using the multiplicative gradient-based algorithm, and we adopt an explicit scheme, defined by:

ok+1 (x) =
{[

i(x)
(ok ⊗h)(x)

⊗h(−x)
]}

× ok (x)

1− εTV div
(

∇ok (x)
|∇ok (x)|

) (S43)

where div(·) denotes the divergence, ∇ok (x) stands for the gradient of ok (x), εTV represents the regular-

ization parameter, and h(x) is the PSF of the optical system. Numerically, we noticed that the regulariza-

tion parameter εTV should be neither too small nor too large: if εTV is too small, RL will be dominated by

the data model; if εTV is too large, RL will be dominated by the regularization term. For larger εTV , the

denominator of Eq. S43 will become zero or negative. This must be avoided because small denominators

create points of very high intensity, which are amplified at each iteration. A negative value violates the

nonnegativity constraint.

To quantify the quality of the deconvolution we use the I-divergence16 criteria. According to Ref.16,

the I-divergence is the only consistent measure in the presence of a non-negativity constraint. The I-

divergence between two images A and B is given by:

IA,B = ∑
i, j

{
Ai, j ln

[
Ai, j

Bi, j

]
−
(
Ai, j −Bi, j

)}
(S44)

while the mean square error is given by:

MSEA,B = ∑
i, j

{
Ai, j −Bi, j

}2 (S45)

We can notice that the I-divergence is non-symmetric, but MSE is. For simulated data, the I-divergence

and MSE values can be computed by comparing the final estimate to the initial undegraded object. How-

ever, we have problems with real data because we do not know exactly what the initial object before

degradation was. In this case, to stop the iterations, we define a difference measure between two succes-

sive iterations. If the difference is smaller than a threshold, we stop the computation, and we suppose that

the last estimation is the best one. The criterion is defined as the following:

χk+1 =
∑Nx,y

x,y=1 |ok+1 (x,y)−ok (x,y)|

∑Nx,y
x,y=1 ok (x,y)

< t (S46)

Typical threshold values t used are around 10−4, depending on the precision we want. It also depends

on the regularization parameter. For high values of the regularization parameter, the stop criterion should

not be too small because we noticed that the χk could oscillate between two values, as shown in Fig. S3.

Figure S3 shows deconvolution results under different iteration times and regularization parameters.
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target 

3D rendering 

0 0.02 1.58 1.6

a

xy
z

All-in-focus image RL iter 50 times RL iter 500 times

0.001TVε = 0.005TVε = 0.01TVε =

b c d

e f g

h1 h2

Figure S3. Deconvolution under different iterations and regularization parameters. a, the 3D refraction index. b, single-shot
scanning image. c, the RL deconvolution result under 50 iterations. d, the RL deconvolution result under 500 iterations. e-g,
RL+TV deconvolution results under different regularization parameters εTV respectively with 500 iterations. h1, the criterion
lines under different iterations. h2, the enlarged region in h1.

We have simulated a 3D object composed of absorption (a tilted USAF target) and phase (a tilted star

target). The all-in-focus single-shot scanning image is shown in Fig. S3b. We perform RL deconvolution

and judge the stop criteria. The result performed under 500 iterations (Fig. S3d) is much clearer than

that under 50 iterations (Fig. S3c). Moreover, the deconvolution results under different regularization

parameters εTV are shown in Figs. S3e-g. It can be seen that the value should be selected appropriately.

High values of the regularization parameter will result in over-smoothed results, and the χk will oscillate

as shown in Figs. S3h1-h2.
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Supporting Information S6. Comparisons between RL, RL-TV and Wiener deconvolution
under different noise levels.

In this section, we further analyze different deconvolution methods, including RL, RL-TV and Wiener

deconvolution, with the influence of different signal-to-noise (SNR) levels and different regularization

parameters. The SNR is calculated as:

SNR = 10log10

[
∑N

x=1 ∑M
y=1 f (x,y)2

∑N
x=1 ∑M

y=1 [ f (x,y)−g(x,y)]2

]
(S47)

where f (x,y) is the original all-in-focus image, and g(x,y) is the noisy image. Figure S4 demonstrates

the simulation results. As shown in Fig. S4a1, the all-in-focus image is blurred without noise, and the de-

convolution results under different regularization parameters εTV = 0,0.001,0.01 are shown respectively

in Figs. S4a2-a4. In Figs. S4b1, c1, d1, the blurred image is added with random noise, and the SNR

levels decrease, i.e., 70dB, 51dB, and 20dB respectively. As we can see, under a low SNR level, a low

value of the regularization parameter εTV will result in the deconvolution being ruined by noise while a

high value of εTV will lead to a smooth result.

In addition to the RL-TV deconvolution method, we also make a comparison with Wiener deconvolu-

tion, which is a direct deconvolution method calculated by:

F (u,v) =
H∗ (u,v)G(u,v)

|H (u,v)|2 + ε
(S48)

where F (u,v) is the Fourier spectrum of object, G(u,v) is the Fourier spectrum of the captured image,

H (u,v) is the transfer function and ε is the regularization parameter.

Compared with RL-TV deconvolution, the speed of Wiener deconvolution is fast. However, as can

be seen in Figs. S4a5-d5, this deconvolution method is very sensitive to noise. When the noise level

is high, the deconvolution result will be corrupted by the noise. Taking both detail perseveration and

noise suppression into consideration, we choose RL-TV deconvolution method in all experiments, and

the regularization parameters are empirically chosen between 0 and 0.01 according to noise levels.
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a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

All-in-focus image 0.001TVε = 0.01TVε =RL deconvolution Wiener deconvolution

a5

b5

c5

d5

Figure S4. Comparisons between RL deconvolution, RL deconvolution with different regularization parameters and Wiener
deconvolution under different SNR levels. Deconvolution results of different SNR levels. a1-d1, the all-in-focus image with
different SNR levels, SNR = ∞, 70dB, 51dB, 20dB respectively. a2-d2, RL deconvolution results without TV regularization.
a3-d3, RL deconvolution with εTV = 0.001. a4-d4, RL deconvolution with TV parameter εTV = 0.01. a5-d5, Wiener
deconvolution.
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