
Supporting Information

for Laser Photonics Rev., DOI 10.1002/lpor.202400387

High-Speed High-Resolution Transport of Intensity Diffraction Tomography with Bi-Plane

Parallel Detection

Ning Zhou, Runnan Zhang, Weisheng Xu, Ruizhi Zhu, Hanci Tang, Xiao Zhou, Jiasong Sun, Peng

Gao*, Qian Chen* and Chao Zuo*



Supporting Information for

High-speed high-resolution transport of intensity

diffraction tomography with bi-plane parallel

detection
Ning Zhou1,2,3, Runnan Zhang1,2,3, Weisheng Xu1,2,3, Ruizhi Zhu1,2,3, Hanci Tang1,2,3, Xiao
Zhou1,2,3, Jiasong Sun1,2,3, Peng Gao4,*, Qian Chen2,3,*, and Chao Zuo1,2,3,*

1Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing

University of Science and Technology, Nanjing, Jiangsu 210094, China
2Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology,

Nanjing, Jiangsu 210019, China
3Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology,

Nanjing, Jiangsu 210094, China
4School of Physics, Xidian University, Xi’an, China
1Ning Zhou, Runnan Zhang, and Weisheng Xu contributed equally to this work
*Address all correspondence to Peng Gao,peng.gao@xidian.edu.cn, Qian Chen,chenqian@njust.edu.cn, Chao

Zuo, zuochao@njust.edu.cn

ABSTRACT

This document provides supplementary information for “High-speed high-resolution transport of inten-

sity diffraction tomography with bi-plane parallel detection”.
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Supporting Information S1. Defocus distance selection analysis

As described in the manuscript, the BP-TIDT method encodes the low-frequency phase information lost

due to mismatched illumination into the intensity image through defocus modulation. In Section 2 of

the main text, we detailed how to reconstruct the 3D RI of the sample using data from two different

focal planes. The experimental results in Fig. S1(a1) show that images with symmetrically separated

smaller defocus distances can reconstruct the high-frequency components of the RI with high quality

(the filopodia of HepG2 cells within the white circle are visible). Nevertheless, there is a slight lack of

low-frequency components (the cell nucleus and the overall cell contour indicated by the white arrow are

not prominent). In contrast, as shown in Fig. S1(a2), images with more considerable defocus distances

can reconstruct the low-frequency components well (such as the overall cell contour and the cell nucleus

indicated by the white arrow are visible). However, the high-frequency components are still lost (the

filopodia within the white circle are not visible due to high-frequency noise). Therefore, to ensure spatial

resolution while obtaining better low-frequency reconstruction results with the BP-TIDT method, we

need to analyze and discuss the defocus distance from the perspective of the PTF.
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Figure S1. Analysis of defocus distance selection. (a1)-(a4) Reconstruction results of HepG2 with
different defocus schemes. (b) Absolute value distribution of the two-dimensional phase transfer
function (PTF) under mismatched illumination and defocused plane conditions. (c1)-(c2) PTF
corresponding to different defocus distances.

As described in Section 2.2 of the main text, since defocus is an energy transfer process1, the abso-

lute value of the phase distribution in the non-overlapping region remains unchanged compared to the
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focused condition, so we only analyze PTF in the red dashed box area in Fig. S1(b). As shown in Fig.

S1(c1), under coherent illumination, the response curve of the PTF will offer an increasingly accelerated

oscillating distribution as the defocus distance increases, leading to multiple zero-crossings in the curve

(indicated by the red circles in the figure). Zero-crossings are not conducive to recovering high-frequency

phase components during the reconstruction process. When the defocus is small, the PTF can be approxi-

mated as a linear function related to the frequency coordinate u, effectively avoiding function oscillation,

but this also leads to a decrease in low-frequency phase contrast2. It is difficult to obtain high signal-to-

noise ratio reconstruction results, especially for low spatial frequency components such as cell contours

or more prominent cellular organelles within the cell. The analysis results of the transfer function corre-

spond to the results of HepG2 cells in Figs. S1(a1) and (a2). Therefore, to restore high-quality results,

we adopt two sets of intensity images with asymmetric defocus distances in the BP-TIDT method to syn-

thesize and optimize the PTF, ensuring resolution while obtaining better low-frequency reconstruction

effects, as shown in Fig. S1(a3). It should be noted that, due to the aberrations between the actual imag-

ing system and the theoretical reconstruction model, as well as the marginal effect of the low-frequency

enhancement (as shown in the subgraph of Fig. S1(c2)), it is not possible to enhance the low-frequency

by infinitely increasing the defocus distance. The high-frequency part will rapidly oscillate and attenuate

with increasing defocus distance, leading to an increase in high-frequency noise in the reconstruction RI

(as shown in Fig. S1(a4)). Therefore, we chose ∆z =−1 µm and ∆z = 6 µm in our previous experiments.

The theoretical analysis and experimental results suggest that simultaneously collecting small and

large defocus images under asymmetric defocus distances provides new possibilities to push the resolu-

tion limit and improve the low-frequency performance of BP-TIDT imaging. However, due to the compli-

cated form of the PTF under tilted illumination in 3D diffraction tomography, solving an optimal imaging

system scheme that considers both the illumination NA and defocus distance is quite challenging. The

current selection of defocus distance is based on empirical design combined with intuitive standards re-

lated to the shape of the PTF and experimental results. Enabling more elaborate criteria (merit functions)

to evaluate the “goodness” of the defocus distance and optimize imaging results based on optimization

algorithms are interesting directions for future work.

Supporting Information S2. Analysis of illumination schemes for 3D dy-

namic imaging

In dynamic imaging processes, to visualize 3D living samples with minimal motion-related artifacts, it

is necessary to choose an appropriate illumination scheme while reducing exposure time. Based on ring-

shaped LED illumination, this section further optimizes the illumination scheme through simulation to

determine the number of LEDs required for illumination. Figure S2 shows the simulated reconstruction

results of a 6 µm diameter polystyrene microsphere under different illumination modes. To simulate the

experimental platform realistically, the imaging system and sample parameters utilized in the simulation
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Figure S2. Reconstruction results under different illumination modes. (a1)-(d1) Transverse slices of a
6 µm diameter polystyrene microsphere reconstructed from 24, 12, 8, and 4 images, along with the
corresponding 3D frequency spectral filling conditions for each illumination mode. (a2)-(d2) Axial
slices of the reconstructed microsphere under different illuminations.

are consistent with Section 2.1 of the main text. As shown in Fig. S2(a), we first used 24 LEDs as

the illumination scheme for image acquisition and reconstruction, and the results obtained were almost

identical to the input original data. Additionally, the 3D frequency spectral filling condition in Fig. S2(a1)

also indicates that the 3D spectrum can be effectively filled when there is sufficient data redundancy,

achieving isotropic resolution in the transverse direction. It should be noted that although the refractive

index reconstructed in the experiment is consistent with the simulation results, we still found that it is

somewhat underestimated compared to the true value. In addition, we observed a significant stretching

phenomenon of the sample in the z-axis direction. This is due to the missing cone problem inherent in the

LED angle-scanning ODT technology3, 4. As the number of illumination LEDs is gradually reduced, the

reconstruction results shown in the transverse and axial slices still have similar distributions, as shown in

Figs. S2(b)-(c). However, the filling rate of the 3D frequency spectrum will gradually decrease with the

reduction of LED numbers, and the reconstructed RI will be underestimated due to the missing spectrum,

which needs to be considered in the subsequent algorithm for compensation.

Reducing the number of LEDs to four leads to significant artifacts and distortions, as indicated by

the white arrows in Fig. S2(d2), rendering the reconstruction results unsatisfactory. The 3D frequency

spectrum filling condition in Fig. S2(d1) also indicates that this illumination scheme has insufficient data

redundancy, leading to an anisotropic resolution in the transverse slices. The simulation results show that

at least 8 raw images can provide better data support for solving the problem. It should be noted that
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in the actual imaging process, reducing the number of LEDs used decreases data redundancy, making

the reconstruction results more sensitive to noise and errors. Therefore, in dynamic experiments with

living cells, we must combine the LED position calibration algorithm5 with system aberration correction

methods6 proposed in our previous work to calibrate the transfer function, optimizing the imaging results

while improving temporal resolution.

Supporting Information S3. Transfer function theory for two-dimensional

imaging

For two-dimensional (2D) thin samples in quantitative phase imaging (QPI), the object is described by a

2D complex amplitude function O(r) = A(r)exp[ jϕ(r)], where A(r) and ϕ(r) represent the absorption

and phase components of the sample respectively, with r is a short-hand notation for the spatial coordinate.

Assuming the sample is illuminated by a quasi-monochromatic plane wave with unit amplitude, the total

field U(r) can be considered as the coherent superposition of the incident field Uin(r) and scattered field

Us(r), i.e.,U(r) = Uin(r)+Us(r). Under the assumption of generality, we represent the contribution of

the target as a complex phase function φs(r), with the form7:

φs(r) = ln [U(r)/Uin(r)] = ln [1+Us(r)/Uin(r)]
≡ a(r)+ jϕ(r)

(S1)

For 2D imaging, the significance of the complex phase function φs(r) = lnA(r) + jϕ(r) = a(r) +
jϕ(r) is evident, where the a(r) and ϕ(r) represent the sample’s real (absorption) and imaginary (phase)

components respectively. In previous work, we provided a linearized relationship between the first-order

scattered field and the target function under the first-order Born or Rytov approximation:

Ô(u−uin) = Ûs1(u)P(u) (S2)

where Us1(r) =Uin(r)φs(r) stands for the first-order scattered field of the sample, Ô and Ûs1 are the 2D

Fourier transforms of O and Us1 respectively. P(u) is the 2D complex pupil function [i.e., the 2D coherent

transfer function (CTF)], which ideally is a circular function with a radius NAob j/λ determined by the

NA of the objective lens. For 2D samples, the first-order scattered field provides the spectral information

of the object within the displaced pupil function. Eq.S2 indicates that, for a given illumination angle,

each measurement of the first-order scattered field Ûs1 only provides limited frequency information of

the object determined by the illumination angle and the pupil function. Therefore, it is necessary to

illuminate the object from different directions, i.e., adjust the incident light angle uin to expand the

accessible object spectrum, thereby reconstructing the complex amplitude of the 2D sample. For typical
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microscope systems, the maximum allowable illumination angle is limited by NAob j, and its maximum

spectral coverage is the same as that of traditional non-coherent illumination microscopy. Compared

with the coherent diffraction limit, it has doubled the lateral resolution (2NAob j/λ ). In traditional QPI

systems, to determine the first-order scattered field Us1(u), the complex amplitude distribution (amplitude

and phase) of the total field U(u) is required, which usually involves interferometric or holographic

measurements. However, for non-interferometric QPI methods, people attempt to retrieve the sample’s

phase distribution from the intensity of the total field measured, which can be directly expressed as:

I(r) = |A(r)|2 = |U(r)|2 = |Uin(r)|2|expφs(r)|2 = exp [2Re [φs(r)]] (S3)

According to Eq.S2 and Us1(r) =Uin(r)φs(r), the complex phase function of the first-order scattered

field under the Born or Rytov approximation can be written as:

φs(r) =
1

Uin(r)
Us1(r)

=
1

Uin(r)
[O(r)Uin(r)]⊗g(r)

=
1

Uin(r)
[a(r)Uin(r)]⊗g(r)+

j
Uin(r)

[ϕ(r)Uin(r)]⊗g(r)

(S4)

where g(r) denotes the complex point spread function (PSF) of the imaging system. According to Eq.S4,

the intensity image of the 2D measurement can be expressed as:

ln[I(r)] = 2Re [φs(r)]
= 2Re

[
1

Uin(r)
[a(r)Uin(r)]⊗g(r)+ j

Uin(r)
[ϕ(r)Uin(r)]⊗g(r)

]
= 2Re [a(r)⊗g′(r)]+2Re [ jϕ(r)⊗g′(r)]
= a(r)⊗2Re [g′(r)]+ϕ(r)⊗2Re [ jg′(r)]
= a(r)⊗

[
g′(r)+g′∗(r)

]
+ϕ(r)⊗

[
g′∗(r)−g′(r)

]
= a(r)⊗ha(r)+ϕ(r)⊗hp(r)

(S5)

where g′(r) indicates the PSF modulated by the incident field Uin, ha(r) and hp(r) signify the PSF cor-

responding to the real (absorption) and imaginary (phase) components respectively. Taking the Fourier

transform of both sides of Eq.S5, we obtain the logarithmic intensity spectrum:

ln[Î(u)] = â(u)Ha(u)+ ϕ̂(u)Hp(u) (S6)
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where Î(u), â(u) and ϕ̂(u) are the Fourier spectrum of the I(r), a(r) real (absorption) and imaginary

(phase) components. Ha(u) and Hp(u) are the transfer functions of the absorption and phase components,

respectively. Under coherent illumination, Ha(u) and Hp(u) can be expressed as:

Ha(u) = P(u+uin)+P∗ (u−uin)

Hp(u) = P∗ (u−uin)−P(u+uin)
(S7)

where P(u+uin) is the Fourier transform of g′(r) , utilizing the shift property of the Fourier transform.

P(u) and P∗ (u) are the conjugate of the aperture function.

For 2D QPI of unlabeled biological samples, the phase component ϕ̂(u) dominates the intensity

contrast and is the quantity of interest. As shown in Figure 2(a) of the main text, for a perfectly focused

imaging system, axial illumination (uin = 0) does not produce phase contrast because the two asymmetric

(positive and negative) pupils cancel each other out, indicating that phase structures cannot be observed

under this condition. Increasing the illumination angle (0 < |uin| < NAob j/λ ) causes the two pupils to

no longer completely overlap, thereby making the phase information visible. However, only when the

illumination angle matches the NA of the objective lens (|uin|= NAob j/λ ) can the low-frequency phase

component (near zero frequency) be fully transferred. This matching illumination condition is crucial for

the precise phase recovery of non-interferometric QPI methods based on asymmetric illumination, such

as Fourier ptychographic microscopy (FPM)8 and Transport of intensity equation (TIE)9.

Supporting Information S4. Transfer function theory for three-dimensional

imaging

S4.1. Relationship between two-dimensional complex amplitude and three-dimensional
complex scattering potential
In the fundamental theory of diffraction tomography, the physical quantity to be inverted is the scattering

potential of a thick three-dimensional (3D) sample, depicted as follows10:

O(r) = k2
0

[
n(r)2 −n2

m

]
(S8)

where k0 = 2π/λ is the wave number, λ is the illumination wavelength in free space, n(r) = nre + i ·nim

and nm are the spatial refractive index (RI) distributions of the sample and its surrounding medium,

respectively. The real part of the sample’s RI nre describes the phase modulation properties of light

passing through the sample, and the imaginary part nim describes the modulation of absorption. r =

(rT ,z) = (x,y,z) is a shorthand notation for the 3D spatial coordinates, with the z-direction parallel to the

microscope’s objective lens. Without loss of generality, z = 0 is the plane of the objective lens. We define
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∆ε(r) = n(r)−nm as the sample’s dielectric constant, representing local variations in the internal RI, and

assume that it is small. Thus, the complex scattering potential can be described as:

O(r) = k2
0 [∆εRe(r)+ i∆εIm(r)] (S9)

where ∆ε = ∆εre + i ·∆εim, ∆εre refers to the phase effect on the object, and ∆εIm represents the effect of

absorption.

For 3D imaging, the variation of the phase ϕ(r), which is experienced by the incident light Uin(r) as

it passes through the sample along a specific path spath, can be approximated by ray optics11:

ϕ(r)≈ 2π
λ

(
∫path dspathnRe(r)− stotnm

)
(S10)

Since the measured samples in 3D diffraction tomography are typically transparent biological cells

with negligible imaginary parts (absorption) of the RI, we neglect the imaginary part of the RI here. s

is the approximate thickness of the sample. For a homogeneous sample with RI ns, the absolute phase

variation is calculated as:

ϕ(r) =
2π
λ

s(ns −nm) =
2π
λ

sεn (S11)

This equation can be interpreted as a comparison of phase change ϕ(r) over a period of 2 with the

change of the optical path length s(ns −nm) over one wavelength λ .

Then write Eq.S11 in differential form, we express the total differential of ϕ(r) with respect to spatial

distance s and RI variation εn as:

d(ϕ(r))
2π

=
εn

λ
ds+

s
λ

dεn (S12)

The phase ϕ(r) is composed of two contributions from the sample: (1) the thickness of the sample:

d(ϕ(r))
2π

=
εn

λ
ds (S13)

and (2) the RI variation inside the sample:
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d(ϕ(r))
2π

=
s
λ

dεn (S14)

Note that in general εn is dependent on r(3D) = (x,y,z) and ϕ(r) is measured at the detector plane

r(2D) = (x,y). If the RI of the sample is fixed, then the total phase ϕ(r) depends on the sample’s

thickness. Also, if the sample’s thickness s is fixed, then the local variation of the RI within the sample

determines the value of the absolute phase.

When the sample only modulates the phase of the transmitted field (given by nre(r)), the function

O(r) is real in the lossless case, so the target function is O(r) = ∆εRe. When considering the sam-

ple’s absorption (given by nim), the function O(r) = ∆εRe + i∆εIm becomes a complex function12, where

∆εRe = k2
0(nre(r)2−nim(r)2−n2

m) and ∆εIm = 2k2
0nre(r)nim. According to the Eq.S10, the complex phase

function can be expressed as φs(r) = ∆εIm + i∆εRe, where ∆εIm and ∆εRe represent the imaginary (ab-

sorption) and real (phase) parts of the sample’s complex scattering potential, respectively.

S4.2. The transfer function of three-dimensional imaging
Assuming that a 3D sample is illuminated by a quasi-monochromatic plane wave with unit amplitude,

the total field U(r) obtained can be considered as the coherent superposition of the incident field Uin(r)
and the scattered field Us(r)10:

U(r) =Uin(r)+Us(r) (S15)

Assuming the incident field is a plane wave:

Uin(x,y,z) =
√

S (−kxi,−kyi)ei(kxix+kyiy+kziz) (S16)

where S stands for the 2D intensity distribution of the illumination source (in Kohler illumination), and

(kxi,kyi,kzi) indicates the spatial frequency of the incident field, satisfying:

kzi =
√

k2 − k2
xi − k2

yi (S17)

where k is the wave number in the surrounding medium. According to the first-order Born approximation,

the scattered field can be expressed as:
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US(r) =
∫∫∫

Uin
(
r′
)

O
(
r′
)

G
(
r− r′

)
dr′ (S18)

where G represents the Green’s function, assuming our imaging system satisfies the homogeneous free-

space approximation:

G
(
r− r′

)
=

exp(ikm |r− r′|)
4π |r− r′|

(S19)

Using Weyl’s expansion, this spherical wave Green’s function can be represented in the form of

angular spectrum representation:

G
(
r− r′

)
=

ik
16π3

∫∫ 1
sz

eik[sx(x−x′)+sy(y−y′)+sz|z−z′|]dsxsy (S20)

where (sx,sy,sz) is the unit vector component, sx = kx/k, sy = ky/k, and sz = kz/k are related to the spatial

frequency variable (kx,ky,kz) , with the axial spatial frequency kz satisfying:

kz =
√

k2 − k2
x − k2

y (S21)

where the positive sign in kz corresponds to the forward scattering component. Therefore, the Green’s

function can be rewritten as:

G
(
r− r′

)
=

i
2π

∫∫ 1
kz

ei[kx(x−x′)+ky(y−y′)+kz|z−z′|]dkxky (S22)

where |z− z′| = z− z′, since our system only measures the forward scattering on the camera plane. Sub-

stituting Eqs.S16 and S22 into Eq.S18:

US(r) =
i

16π3

√
S (−kxi,−kyi)

∫∫∫
ei(kxix+kyiy+kziz)O

(
r′
)

∫∫ 1
kz

ei[kx(x−x′)+ky(y−y′)+kz|z−z′|]dkxkydr′
(S23)

Then we calculate the total scattered field at the focal plane (z = 0) and integrate over dx′ and dy′ to

obtain:
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US(x,y,0) =
i

16π3

√
S (−kxi,−kyi)

∫
eikziz∫∫ 1

kz
e−ikzz′Ô

(
kx − kxi,ky − kyi,z′

)
ei(kxix+kyiy)dkxkydz′

(S24)

where Ô(kx,ky,z′) represents the 2D Fourier transform (FT) of the axial slice of the sample at depth z′,

and ·̂ is the 2D FT operator. By neglecting the evanescent field components in Ô, the integrations over kx

and ky can be replaced by inverse Fourier transforms (IFT):

US(x,y,0) =
i

16π3

√
S (−kxi,−kyi)

∫
eikziz

F−1

e−i
√

k2−k2
x−k2

y z′√
k2 − k2

x − k2
y

Ô
(
kx − kxi,ky − kyi,z′

)dz′
(S25)

where F−1 represents the two-dimensional IFT operator.

The focused intensity captured at the back focal plane of the microscope is:

I(x,y) = |U(x,y,0)∗h(x,y)|2 (S26)

where U(x,y,0) is the total field on the front focal plane, h(x,y) is the microscope’s point spread

function (PSF), and ∗ denotes 2D convolution. For simplicity, we neglected the magnification factor of

the objective lens and the remaining parts of the derivatives in Eq.S26, which can be easily accounted

for in actual implementation by rescaling the spatial coordinates. According to Eqs.S15 and S26, the

intensity can be expanded into the following four components13:

I1 = |Uin(x,y,0)∗h(x,y)|2 (S27)

I2 = [Uin(x,y,0)∗h(x,y)]∗ · [US(x,y,0)∗h(x,y)] (S28)

I3 = [Uin(x,y,0)∗h(x,y)] · [US(x,y,0)∗h(x,y)]∗ (S29)
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I4 = |US(x,y,0)∗h(x,y)|2 (S30)

where I1 represents the DC term for the background intensity, and I4 describes the nonlinear term for the

second-order scattering interaction. If the sample and surrounding medium have a small RI contrast and

weak absorption, this term can be neglected.

Under weak object approximation, we can discard the higher-order term I4 to linearize Eq.S26:

I ≈ I1 + I2 + I3 (S31)

Performing a 2D Fourier transform on Eqs.S27 and S28 yields:

Î1 (kx,ky) = S (−kxi,−kyi)
∣∣P(kxi,kyi)

∣∣2δ (kx − kxi,ky − kyi) (S32)

Î2 (kx,ky) =
i

2π
S (−kxi,−kyi)P∗ (kxi,kyi)

∫ eikziz′ e−i
√

k2−(kx+kxi)
2−(ky+kyi)

2
z′√

k2 − (kx + kxi)
2 − (ky + kyi)

2
Ô
(
kx,ky,z′

)
P(kx + kxi,ky + kyi)dz′

(S33)

where P represents the pupil function of the objective lens, which is the 2D FT of the PSF. Also, since

I3(x,y) = I∗2 (x,y), it follows:

Î3(kx,ky) = Î∗2 (−kx,−ky) (S34)

Next, we consider the scattering potential term:

O(r) =
1

4π
k2

0∆ε(r) (S35)

where ∆ε(r) = n(r)−nm is the dielectric constant of the sample, representing local variations in the RI,

and assuming εn(r) is small, we can write the complex scattering potential O as:
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O(r) = k2
0 [∆εRe + i∆εIm] (S36)

where ∆εRe is the real part of εn(r) and represents the phase effect on the object, ∆εIm is the imaginary

part of εn(r) and represents the effect of absorption. Performing a 2D Fourier transform of the O(r) along

the z-axis yields:

Ô(kx,ky,z) = k2
0

[
∆̂εRe (kx,ky,z)+ i∆̂ε Im (kx,ky,z)

]
(S37)

Since both ∆εRe and ∆εIm are real, their 2D Fourier transforms satisfy:

{
∆̂εRe (kx,ky,z) = ∆̂ε

∗
Re (−kx,−ky,z)

∆̂ε Im (kx,ky,z) = ∆̂ε
∗
Im (−kx,−ky,z)

(S38)

Therefore:

Ô∗ (−kx,−ky,z) = k2
0

(
∆̂εRe (kx,ky,z)− i∆̂ε Im (kx,ky,z)

)
(S39)

Substituting Eqs.S33, S34, S37 and S39 into Eq.S31, we can obtain the following Fourier domain linear

model14:

Î ≈ Î1 +Hp∆̂εRe +Ha∆̂ε Im (S40)

where, Hp and Ha represent the phase and absorption transfer functions respectively. This model relates

the intensity images captured from different illumination angles to the dielectric constant of the sample.

Then, calculate the spectrum ÎS = Î2 + Î3 of the scattered field. To derive the phase and absorp-

tion transfer functions, we group all terms in ÎS containing ∆̂εRe as ÎS,Re and terms containing ∆̂ε Im as

ÎS,Im
13–15:
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ÎS,Re (kx,ky) =
ik2

0
16π3 S (−kxi,−kyi)

∫

[
P∗ (kxi,kyi)eikziz′ e

−i

√
k2−(kx+kxi)

2−(ky+kyi)
2

z′√
k2−(kx+kxi)

2−(ky+kyi)
2

P(kx + kxi,ky + kyi)

−P(kxi,kyi)e−ikziz′ e
i

√
k2−(−kx+kxi)

2−(−ky+kyi)
2

z′√
k2−(−kx+kxi)

2−(−ky+kyi)
2
P∗ (−kx + kxi,−ky + kyi)

]
∆̂εRe (kx,ky,z′)dz′

(S41)

ÎS,Im (kx,ky) =− k2
0

16π3 S (−kxi,−kyi)

∫

[
P∗ (kxi,kyi)eikziz′ e

−i

√
k2−(kx+kxi)

2−(ky+kyi)
2

z′√
k2−(kx+kxi)

2−(ky+kyi)
2

P(kx + kxi,ky + kyi)

+P(kxi,kyi)e−ikziz′ e
i

√
k2−(−kx+kxi)

2−(−ky+kyi)
2

z′√
k2−(−kx+kxi)

2−(−ky+kyi)
2
P∗ (−kx + kxi,−ky + kyi)

]
∆̂εIm (kx,ky,z′)dz′

(S42)

where Eqs.S41 and S42 allow us to define the phase and absorption transfer functions at a given illumi-

nation angle (−kxi,−kyi) and specific depth z′. Thus, the intensity spectrum can be rewritten as:

Î (kx,ky) = Î1 (kx,ky)+ ∫ Hp (kx,ky,z′;kxi,kyi) ∆̂εRe (kx,ky,z′)dz′

+∫ Ha (kx,ky,z′;kxi,kyi) ∆̂εIm (kx,ky,z′)dz′
(S43)

where, the phase transfer function Hp (kx,ky,z′;kxi,kyi) is:

Hp (kx,ky,z′;kxi,kyi) =
ik2

0
16π3 S (−kxi,−kyi){

P∗ (kxi,kyi)eikziz′ e
−i

√
k2−(kx+kxi)

2−(ky+kyi)
2

z′√
k2−(kx+kxi)

2−(ky+kyi)
2

P(kx + kxi,ky + kyi)

−P(kxi,kyi)e−ikziz′ e
i

√
k2−(−kx+kxi)

2−(−ky+kyi)
2

z′√
k2−(−kx+kxi)

2−(−ky+kyi)
2
P∗ (−kx + kxi,−ky + kyi)

} (S44)

And the absorption transfer function Ha (kx,ky,z′;kxi,kyi) is:
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Ha (kx,ky,z′;kxi,kyi) =− k2
0

16π3 S (−kxi,−kyi){
P∗ (kxi,kyi)eikziz′ e

−i

√
k2−(kx+kxi)

2−(ky+kyi)
2

z′√
k2−(kx+kxi)

2−(ky+kyi)
2

P(kx + kxi,ky + kyi)

+P(kxi,kyi)e−ikziz′ e
i

√
k2−(−kx+kxi)

2−(−ky+kyi)
2

z′√
k2−(−kx+kxi)

2−(−ky+kyi)
2
P∗ (−kx + kxi,−ky + kyi)

} (S45)

where the terms S (−kxi,−kyi) and P(kxi,kyi) represent the effects of the light source. Since our illumina-

tion source is temporally quasi-coherent, we can obtain normalized transfer functions by dividing their

respective transfer functions by Î1, considering the defocus situation:

Hp(u) =
ik2

0
16π3

{
P(u−uin)

exp{−i[η(u−uin)−η(uin)](z+∆d)}
η(u−uin)

−P(u+uin)
exp{i[η(u+uin)−η(uin)](z+∆d)}

η(u+uin)

} (S46)

Ha(u) =
k2

0
16π3

{
P(u−uin)

exp{−i[η(u−uin)−η(uin)](z+∆d)}
η(u−uin)

+P(u+uin)
exp{i[η(u+uin)−η(uin)](z+∆d)}

η(u+uin)

} (S47)

where u = (kx,ky,z) signifies the frequency and spatial domain coordinates, (kx,ky) represent the fre-

quency domain coordinates, uin =(kxi,kyi) represent the frequency of the incident field, η(x)=
√

k2
0 −|x|2

denotes the axial wave vector, η (u−uin) =
√

k2 − (kx + kxi)
2 − (ky + kyi)

2, ∆d refers to the axial defo-

cus distance. By discretizing the 3D sample along the z-axis, we represent the axial position as z = m∆z,

where ∆z is the axial sampling interval (i.e., the slice thickness), and m is the index of the slices distributed

on the z-axis.

S4.3 Formula derivation for reconstruction
First, each intensity image is processed to remove the background. Subsequently, based on the transfer

functions derived from the forward model, the difference between the actual and predicted measured

values is minimized using the least-squares algorithm with the l2-norm16. Notably, due to the limited

angular range covered by the illumination and imaging optics, there is a “missing cone” along the axial

dimension in both the phase and absorption transfer functions. Consequently, direct inversion will lead

to high-frequency artifacts due to the lack of information. This issue can be effectively mitigated by

applying a minimum total energy constraint with Tikhonov regularization17:
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min
∆̂εRe,∆̂ε Im

∑
l,∆d

∥∥∥Î −Hp∆̂εRe −Ha∆̂ε Im

∥∥∥2

2
+α

∥∥∥∆̂εRe

∥∥∥2

2
+β

∥∥∥∆̂ε Im

∥∥∥2

2
(S48)

where ∥·∥2
2 is the l2-norm of the vector, α and β are the regularization parameters, Î is the Fourier

transform of the normalized acquired intensity data, Hp and Ha are the phase and absorption transfer

functions derived in Section 4.2. Setting the first derivative of Eq.S48 to zero yields a closed solution.

However, since ∆̂εRe and ∆̂ε Im are not real numbers, the first derivative of Eq.S48 cannot be directly

calculated. Decompose ∆̂εRe and ∆̂ε Im into their real and imaginary parts:

∆̂εRe = ∆̂ε
(Re)
Re + j∆̂ε

(Im)

Re

∆̂ε Im = ∆̂ε
(Re)
Im + j∆̂ε

(Im)

Im

(S49)

Eq.S48 can be written as:

min
∆̂εRe,∆̂ε Im

∑
l,∆d

{∥∥∥∥Î −Hp∆̂ε
(Re)
Re − jHp∆̂ε

(Im)

Re −Ha∆̂ε
(Re)
Im − jHa∆̂ε

(Im)

Im

∥∥∥∥2

2

+α
∥∥∥∥∆̂ε

(Re)
Re + j∆̂ε

(Im)

Re

∥∥∥∥2

2
+β

∥∥∥∥∆̂ε
(Re)
Im + j∆̂ε

(Im)

Im

∥∥∥∥2

2

} (S50)

Then setting the first derivatives of the above equation for ∆̂ε
(Re)
Re , ∆̂ε

(Im)

Re , ∆̂ε
(Re)
Im and ∆̂ε

(Im)

Im to zero,

we obtain:



(
2Hp

2 +2α
)

∆̂ε
(Re)
Re +2HaHp∆̂ε

(Re)
Im −Hp

(
Î + Î∗

)
= 0(

2Hp
2 +2α

)
∆̂ε

(Im)

Re +2HaHp∆̂ε
(Im)

Im + jHp

(
Î − Î∗

)
= 0(

2Ha
2 +2β

)
∆̂ε

(Re)
Im +2HaHp∆̂ε

(Re)
Re −Ha

(
Î + Î∗

)
= 0(

2Ha
2 +2β

)
∆̂ε

(Im)

Im +2HaHp∆̂ε
(Im)

Re + jHa

(
Î − Î∗

)
= 0

(S51)

After sorting out Eq.S51, we can get:
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
∆̂εRe =

− ∑
l,∆d

Hp(l,∆d)β Î[l,∆d]

∑
l,∆d

|Ha(l,∆d)|2α+ ∑
l,∆d

|Hp(l,∆d)|2β+αβ

∆̂ε Im =
− ∑

l,∆d
Ha(l,∆d)α Î[l,∆d]

∑
l,∆d

|Ha(l,∆d)|2α+ ∑
l,∆d

|Hp(l,∆d)|2β+αβ

(S52)

After performing the inverse Fourier transform on Eq.S52, we can obtain a closed solution for the internal

RI values of the sample as described in section 2.3 of the main text.

Supporting Information S5. BP-TIDT reconstruction algorithm

The pipeline of the BP-TIDT reconstruction algorithm is shown in Fig. S3, the detailed workflow of

which can be schematically described as follows: 1) By sequentially turning on the illumination units

on the annular LED, we acquired the corresponding intensity images under each illumination angle and

recorded two sets of image stacks with and without samples. 2) We calibrate the illumination angles,

which results in the shift of transfer functions, and use the background intensity stacks for the background

artifact removal. 3) Calculate the transfer functions based on the imaging system’s parameters and the

corrected illumination angles in Step 2. 4) Reconstruct to obtain the 3D RI tomographic images and

perform 3D rendering.

Step 1: Image stacks acquisition and LED spectral calibration
As shown in Fig. S3 Step 1, the illumination units on the annular LED are turned on in sequence to gener-

ate plane waves with an illumination 0.65 NA from different angles. Each LED (WS2812B, SMD-5050)

operates at approximately 200 mW, delivering spatially coherent and quasi-monochromatic illumination

with a wavelength of 523 nm and an FWHM width of 26 nm. We used a spectrometer (CCS200/M,

Thorlabs) to calibrate the LED’s central wavelength and spectral width and obtained the LED’s spectral

curve.

During the experiment, the LEDs on the ring were sequentially illuminated, passing through the

sample. Subsequently, the light carrying the sample’s RI information passes through the objective lens

and the optical path inside the microscope, exits from the light outlet, and enters the back-end SLM

phase modulation and bi-plane parallel detection module. In Supplementary Material S1, we analyzed

the selection of PTF-based defocus distance to generate the corresponding phase modulation pattern

on the back-end SLM, aiming to produce optimal defocus distance modulation. The reflected beams

in the 4 f system were laterally displaced by angles to spatially separate and synchronously capture

intensity images with different defocus distances on the camera’s focal plane. In Visualization S3, we

demonstrate the physical principles of the image generation process through animation to demonstrate

the image acquisition process more clearly. Then, we collect corresponding intensity images at each
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Figure S3. Pipeline of BP-TIDT reconstruction algorithm. Step 1: By sequentially turning on the
illumination units on the annular LED, we acquired the corresponding intensity images under each
illumination angle and recorded two sets of image stacks with and without samples (see also in
Visualization S3). Step 2: Calibrate the illumination angles and use the background intensity stacks for
the background artifact removal. Step 3: Calculate the transfer functions. Step 4: Reconstruct to obtain
the 3D RI tomographic and perform 3D rendering.

illumination angle and record two sets of image stacks with and without the specimen. Note that the

background image stack only needs to be measured once before placing the sample.

Step 2: Illumination angle calibration and intensity background normalization
For the LED illumination calibration process, we recorded 24 intensity images of pure phase objects

on the in-focus plane, and the numerical self-calibration procedure of LED rings is performed in the

frequency domain. The algorithm imposed here follows two geometric constraints. First, the distribution

of our LED ring set is expected to obey concentric circular geometry. Second, the LEDs on each ring

arrangement board are expected to be equally angled. Each pair of neighboring LEDs occupies a 2π/N
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radian, where N = 24 is the LED number. Our LED position calibration algorithm18 starts with an initial

guess (blue star in Step 2 of Fig. S3), and the initial estimated LED positions are often contaminated by

noise. Accordingly, the final calibrated LED positions are parameterized as a nonlinear fitting between

the raw calibration results and the circular geometry constraint of the LED ring set. By solving the

optimization problem, the LED portion can be accurately calibrated, and the calibrated results are shown

in Step 2 of Fig. S3.

As to the background normalization process, 24 raw intensity stacks of object IRaw (r) under illumi-

nation angles identical to the background data acquisition IB (r) are recorded within the same exposure

time, and the background processed object intensity stacks are obtained by the normalization between

raw intensity stack and background intensity distribution I (r) = IRaw (r)/IB (r). Note that background

normalization is a mandatory step to compensate for the illumination inhomogeneities and ensure that the

normalized illuminations from all LED elements are uniform and of unit amplitude. After background

removal, the image is cropped and separated, and two sets of intensity stacks with different defocus

distances are obtained, as shown in Step 2 of Fig. S3.

Step 3: Transfer Function calculation
The transfer function information can be obtained by bringing the calibrated LED center wavelength and

spatial position information, as well as the basic parameters of the imaging system, into Eq. 4 in Section
2.2 of the main text. It is worth noting that if the parameters of the imaging system remain unchanged,

then the transfer function does not need to be recalculated.

Step 4: 3D RI reconstruction and 3D rendering
By combining the two sets of defocused intensity stacks after removing the background in Step 2 and the

transfer function calculated in Step 3 into Eqs.7 and 8 in section 2.3 of the main text, the 3D distribution

of the sample’s RI can be reconstructed. Finally, we used the Fiji software’s volume viewer function to

perform a 3D rendering of the sample, as shown in the Step 4 of Fig. S3.

Supporting Information S6. Hardware implementation for BP-TIDT

Our bi-plane parallel detection imaging system uses a Holoeye Pluto reflective liquid crystal pure phase

panel as the spatial light modulator (SLM). This panel boasts a resolution of 1920× 1080 pixels and

a pixel size of 8 µm, enabling full 2π phase modulation with linear electro-optic characteristics. The

SLM features 8-bit depth, which translates to 256 levels of grayscale, along with a reflectivity of up to

94% and an effective wavelength range spanning from 500 to 670 nm, adequately meeting the spectral

requirements of our experiment. A linear polarizer is positioned in front of the SLM to maximize phase

modulation efficiency, and a neutral density filter is employed to ensure uniform image brightness on

the camera’s sensor. It should be noted that, for the sake of clarity, these additional components are not

depicted in Fig. 1 of the main text. Pre-calibrating the SLM for phase modulation is essential before the
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experiment commences. This process is critical for ensuring the precision and consistency of modulation

throughout the experiment. By pre-calibrating, we can effectively compensate for the SLM’s nonlinear

phase response and static errors, thereby significantly enhancing the accuracy of wavefront control.

Although the SLM represents a higher-cost component within the experimental setup, its high reso-

lution and phase modulation capabilities provide unique value to the experiment. The SLM allows us

to precisely control the defocus distance and perform transfer function analysis, as shown in Support-
ing Information S1. Moreover, the phase modulation capability of the SLM permits the integration of

aberration correction techniques into our experiment, enabling the correction of complex aberrations and

further enhancing image quality6. The versatility and flexibility provided by the SLM offer advantages

unmatched by other technologies. Therefore, despite the higher cost, using the SLM in this experiment

is justified and necessary.

However, we also recognize that the SLM may be costly in some applications. There are some

methods available to address the issue of cost-effectiveness. Blanchard et al.19 placed a quadratically

distorted grating before the imaging lens, creating three laterally shifted images corresponding to different

defocus distances in a single image plane. Waller et al.20 utilized the chromatic aberration inherent in

the microscope to obtain three intensity images at different axial distances from a single color image.

Martino et al.21 developed a single-shot TIE setup based on a beam splitter and several mirrors, permitting

recording two intensity images at different depths simultaneously.

Supporting Information S7. Supplementary experiment used 96 well plate

sample chamber

High-throughput/high-content imaging is critical in biomedical research, providing detailed cellular in-

formation and rapid image analysis. It is essential to fundamental biological research, including drug

screening, model organism studies, and cellular function analysis. As shown in Fig. S4(a), the 96-well

plate is frequently used as a sample chamber in high-throughput/high-content imaging. These plates are

designed with small well diameters and deep walls to maintain a nutrient-rich environment necessary for

cell growth, which can limit the angle of light incidence. For instance, the 96-well plate in the figure

allows a maximum illumination NA of 0.66. When the illumination NA surpasses this value, well walls

may obstruct the light beam, causing a loss of image information, as shown in Fig. S4(b). This limita-

tion can restrict the use of high NA objectives, such as 40× 0.95NA, with traditional ODT technology

that requires matched illumination, thus affecting the imaging resolution in high-throughput/high-content

applications.

The BT-TIDT method proposed in this article overcomes the lighting condition restrictions inherent

in non-interferometric ODT technology. This advancement is compatible with standard sample cham-

bers, such as the commonly used 96-well plates, for high-throughput/high-content imaging, allowing

integration with existing laboratory setups. As demonstrated in Fig. S4(c), a 96-well plate was used
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Figure S4. Compatibility analysis and imaging results of BP-TIDT method with 96 well plate sample
chamber. (a) 96 well plate and its parameter information. (b) Principle of limited illumination angle and
actual images of samples in well plates under different illumination angles (c) Results of High Speed
and High-Resolution 3D RI Imaging of COS-7 Cells Using a 96-well Plate as a sample chamber (see
Visualization S4).

for high-speed, high-resolution 3D refractive index (RI) imaging of COS-7 cells. The image displays

a COS-7 cell in the division process, featuring two nuclei. Observations, including those in Fig. S4(c)

and Visualization S4, indicate that pinocytosis at the cell’s poles is evident during cell division, a period

of high energy demand. This process is crucial for the cell’s energy and material intake regulation. Ad-

ditionally, as the cellular energy sources, mitochondria adopt elongated shapes for metabolic efficiency

under low energy demand and become shorter and rounder to meet increased energy requirements during

cell division. Further dynamic results and detailed visualizations are available in Visualization S4.

Our BT-TIDT method provides high-resolution and high-speed 3D imaging, serving as a valuable

tool for high-throughput and high-content biological research. It is particularly beneficial for applications

such as drug screening and molecular biology studies. This technology accelerates scientific discovery

by facilitating detailed volumetric analysis of biological specimens with enhanced speed and resolution.
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