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ABSTRACT

This document provides supplementary information for “lens-free on-chip 3D microscopy based on
wavelength-scanning Fourier ptychography diffraction tomography”.
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Supplementary Note S1. Forward model of wavelength-scanning Fourier
ptychographic diffraction tomography (wsFPDT)

When light propagates in non-uniform media, it is affected by differences in permittivities, leading to
scattering of light in three-dimensional (3D) space1. The scattered light field emitted usually carries
information on the refractive index (RI) distribution within the sample. In the basic theory of optical
diffraction tomography (ODT)2, scattering potential is commonly used to describe the 3D RI distribution
of thick samples, and the expression is as follows:

V (r) = k2
0
[
n2(r)−n2

m
]
, (S1)

where k0 =
2π
λ is the wave number in the free space, n(r) is the RI distribution of the sample space, and

nm is the RI of the surrounding medium (assumed to be constant). In this document, we use the vectors
r ≡ (x,y,z)≡ (rT ,z) and k ≡ (kx,ky,kz)≡ (kT ,kz) to define the spatial coordinates and the corresponding
frequency coordinates, respectively.

To simplify the model, we assume a monochromatic plane wave Uin(r) irradiates a thick phase object
(such as a biological cell). The resultant transmitted field U(r) is the sum of the incident field, Uin(r),
and the scattered field, Us(r), i.e., U(r) =Uin(r)+Us(r). Among these, the propagation law of scattered
light field can be described by the Helmholtz equation:[

∇2 + k2
m
]
Us(r) =V (r)U(r), (S2)

where km = k0nm is the wave number in the surrounding medium, ∇2 = ∂ 2

∂ 2x +
∂ 2

∂ 2y +
∂ 2

∂ 2z is the 3D Laplacian
operator. Equation (S2) establishes the relationship between the scattered field, Us(r), and the scattering
potential, V (r), of the sample. However, since Us(r) appears on both sides of Eq. (S2), it cannot be solved
directly. To linearize the imaging model and obtain the analytical solution of Eq. (S2), two approxima-
tions, Born and Rytov, can usually be applied to find the first-order solution. These approximations aim
to find the approximate solution by considering only a single scattering event.

When the RI values of the sample are close to its surrounding medium, the light scattering will be
very weak. In this case, it can be assumed that the scattered field can be negligible compared to the
incident field, i.e., Us(r)≪Uin(r), so that

Us1(r)≈Us(r) =U(r)−Uin(r). (S3)

Note that the first-order Born approximation2 assumes that objects are weakly scattering, implying that
sample-induced absorption is negligible and the total phase delay must be much smaller than π/23, 4.
Indeed, the applicability of the Born approximation to the study of large phase objects is limited because
it is largely restricted to the imaging of optically thin samples. When the sample is large or its RI much
higher than that of the medium, the Rytov approximation is preferred to determine Us1(r).

The Rytov approximation3, 5 assumes that the total field has a complex phase function (e.g., U(r) =
exp [ϕ(r)]). The complex phase of the total field is the superposition of the complex phases of the incident
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and scattered fields, expressed by the formula ϕ(r) = ϕin(r)+ϕs(r). When it is substituted into Eq. (S3),
the first-order scattered field Us1(r) can be written as

Us1(r)≈Uin(r){exp[ϕs(r)]−1} ≈Uin(r)ϕs(r) =Uin(r) ln
[

U(r)
Uin(r)

]
. (S4)

In fact, if the scattered field is weak or the total sample-induced phase delay is small (i.e., ϕs(r) =
ϕ(r)−ϕin(r)→ 0), the Rytov approximation can be reduced to Born approximation4:

UR
s1(r)≈Uin(r)ϕs(r) =Uin(r)[ϕ(r)−ϕin(r)]

≈ exp[ϕin(r)]{exp[ϕ(r)−ϕin(r)]−1}
= exp[ϕ(r)]− exp[ϕin(r)]

=U(r)−Uin(r) =UB
s1(r),

(S5)

where UR
s1(r) and UB

s1(r) represent the first-order scattering field under these two approximations, respec-
tively. The Rytov approximation includes the Born approximation as a special case when the object is
weakly scattering. The validity of the Rytov approximation does not depend on the total phase shift in-
duced by the sample, but on the RI gradient within the sample. It has been demonstrated that the Rytov
approximation is superior to the Born approximation for the imaging of thick biological samples3.

Then, using the Green’s function, the linear relationship between the first-order scattering field and
the scattering potential can be derived:

Us1(r) =
∫

G(r− r′)Uin(r′)dr′ = [V (r)Uin(r)]∗G(r), (S6)

where G(r) is the 3D Green’s function in the surrounding medium (G(r) = exp [ jkm |r|]/4π |r|), ∗ is
the 3D convolution. According to Eq. (S6), the first-order scattering field of the entire object is the
superposition of the elemental fields of all point elements that constitute the object, which is equivalent
to the convolution of the Green’s function and the product of the objective function and the incident field.
By applying a Fourier transform to both sides of Eq. (S6), we can derive a linear relationship between
the first-order scattering field and the scattering potential of the object at the focusing plane (z = 0). This
is the well-known Fourier diffraction theorem2:

V̂ (k−kin) =−4π jkzÛs1(kT ;z = 0)δ (kz −
√

k2
m −|kT |2), (S7)

where j is the imaginary unit, “ ·̂ ” represents the Fourier spectrum of the corresponding variable. The

constraint of kz−
√

k2
m −|kT |2 restricts the 3D frequency vector k to have values only on the Ewald shell,

which means that the spectrum of the first-order scattering field Us1(rT ;z = 0) corresponds to the Ewald
shell with a radius of km. By changing the incident wavelength, the resulting first-order scattering field
is mapped to different regions of the 3D spectrum of the sample, expanding the accessible frequency
domain, which allows us to reconstruct the scattering potential of the sample.

Since only defocus intensity images can be captured in a lens-free on-chip tomography (LFOCT)
system, zD represents the defocus distance between the sample and the sensor. In Fourier space, the
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propagation zD distance of a light field along the optical axis can be simply expressed as the product of
2D first-order scattering potential and phase factor: Ûs1(kT ;z = zD) = exp(2π jkzzD)Ûs1(kT ;z = 0). The
Fourier diffraction theorem can be written as:

V̂ (k−kin) =− j4πkz exp(−2π jkzzD)Ûs1(kT ;z = zD)δ (kz −
√

k2
m −|kT |2) (S8)

The solution of the inverse scattering problem requires the first-order scattering field Us1(rT ) to be
either measurable or obtainable by other means. Since intensity-only images are utilized to realize RI
tomographic imaging, it is necessary to establish the relationship between measured intensity images and
the scattering potential of samples. To simplify the description, the incident light field Uin(rT ) can be
regarded as a plane wave with a unit amplitude. We use Uin(rT ) to normalize the scattered field and
define three new variables Un(rT ) =

U(rT )
Uin(rT )

, Usn(rT ) =
Us(rT )
Uin(rT )

, and Us1n(rT ) =
Us1(rT )
Uin(rT )

. Then, combined
with Eq. (S4), the normalized complex amplitude on the sensor plane can be written as:

Un(rT ;z = zD) = exp[Us1n(rT ;z = zD)]. (S9)

The relationship between the measurement field and the first-order scattering field is as follows:

I(rT ;z = zD) = |Un(rT ;z = zD)|2 = |exp[Us1n(rT ;z = zD)]|2 . (S10)

During the experiment, the intensity image containing the sample information was divided by the back-
ground intensity to obtain a normalized value to ensure that the measurement data conformed to the
formula. By combining Eqs. (S8) and (S10), a deterministic relationship can be established between
the measured intensity I(rT ;z = zD) and the scattering potential V (r), resulting in the forward imaging
model for wsFPDT.
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Supplementary Note S2. Detailed description of the reconstruction algo-
rithm

Based on the forward imaging model described in the first section of the supplementary materials, we
apply the wsFPDT method to iteratively update the scattering potential spectrum of the sample with the
measured intensity images as constraints, obtaining the 3D RI distribution of the sample. The detailed
algorithm process is shown in Figure 2 of the main text. In the experiments, the illumination wavelength
is adjusted according to the incremental sequence {λ i, i = 1,2, ...,N} (N is the number of wavelengths),
and the superscript i is used to denote that the image was captured at the i-th illumination wavelength. Ac-
cordingly, the image sensor records a series of low-resolution images {Ii

cap(rT ;z = zD)}. Then we divide
the intensity image containing the sample information by the background intensity at the corresponding
wavelength to obtain a holographic image sequence {Ii

norm(rT ;z = zD)} with consistent intensity. This
can compensate for the non-uniformity of the power spectrum distribution of the supercontinuum laser
as well as the sensor response efficiency. Furthermore, the auto-focusing algorithm is used in advance to
calculate the distance zD between the sample and the sensor6, 7. In addition, We assume that the RI of the
background medium is a constant, denoted as nm.

Step 1: Initialization. We initialize the sample into a uniformly distributed high-resolution RI space,
n(r). For the i-th wavelength λ i, we calculate the scattering potential V i(r) using Eq. (S1) and perform
a 3D Fourier transform on it to obtain its high-resolution initialization spectrum V̂ i(k). Thereafter, we
sequentially take the images into the wsFPDT iterative reconstruction process, updating the initial guess
of the scattering potential spectrum.

Step 2: Extraction of 3D sub-spectrum. For the selected illumination wavelength λ i, the corre-
sponding scattering potential spectrum is V̂ i(k). The 3D sub-spectrum at λ is extracted, which is the 2D
Ewald spherical shell corresponding to k−ki

in in V̂ i(k) space. After projection along the kz direction, we
obtain the 2D sub-spectrum according to

Û i
s1n(kT ;z = zD) =− j

4πkz
exp(2π jkzzD)V̂ i(k−ki

in)δ (kz −
√

ki
m

2 −|kT |2). (S11)

Inverse Fourier transform is taken on the resultant spectrum Û i
s1n(kT ;z = zD) to obtain normalized first-

order scattered field U i
s1n(rT ;z = zD). Then, the normalized complex amplitude U i

n(rT ;z = zD) can be
obtained using Eq. (S9).

Step 3: Intensity constraint. The low resolution intensity image Ii
norm(rT ;z = zD) is used to update

Ii
n(rT ;z = zD) =

∣∣U i
n(rT ;z = zD)

∣∣2 by introducing the pixel binning method8:

Ii
change(rT ;z = zD) =

Ii
norm_M(rT ;z = zD)

Ii
n_bin(rT ;z = zD)

Ii
n(rT ;z = zD), (S12)

where Ii
norm_M(rT ;z = zD) is a version of Ii

norm(rT ;z = zD) after interpolation, and Ii
n_bin(rT ;z = zD) is

calculated by downsampling Ii
n(rT ;z = zD) via M ×M average pooling and then upsampling with the

nearest neighborhood interpolation.
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Next, we use a relaxation coefficient α to update the complex amplitude in the sensor plane9:

Ū i
n(rT ;z = zD) = α

√
Ii
change(rT ;z = zD)exp{ j arg[U i

n(rT ;z = zD)]}+(1−α)U i
n(rT ;z = zD), (S13)

where arg(·) represents the function of obtaining the argument, α is the relaxation parameter controlling
the amount of feedback from the previous estimate, and “ ·̄ ” represents the updated variable.

Finally, according to Eq. (S9), we convert the updated measured field Ū i
n(rT ;z = zD) to the updated

first-order scattering field:

Ū i
s1n(rT ;z = zD) = ln[Ū i

n(rT ;z = zD)]. (S14)

By performing the Fourier transform on the updated first-order scattering field Ū i
s1n(rT ;z = zD), the

updated two-dimensional sub-spectrum ¯̂U i
s1n(kT ;z = zD) can be obtained.

Step 4: Update of 3D spectrum. Using Eq. (S8), ¯̂U i
s1n(kT ;z= zD) is remapped to an Ewald spherical

shell, and then inserted into its corresponding location of the original 3D spectrum V̂ i(k) , thus complet-
ing the update of the scattering potential spectrum. It should be noted that, since the 3D scattering
potential is wavelength-dependent, the 3D spectrum should be changed proportionally before moving to
the next wavelength to update the image, i.e., V̂ i+1(k) = (λ i/λ i+1)2 ¯̂V i(k). The iterative process of Steps
2 to 4 is repeated until the iteration of wsFPDT converges to all acquired intensity images (N images).

Step 5: Regularization. To minimize the artifact introduced by the missing angle space, we adopt
a hybrid regularization method10 that combines total variational (TV) regularization with non-negativity
constraint to fill in the missing information in the scattering potential spectrum:

V i
ret(r)≥ 0,

V i
ret(r) = argmin

V i
ret

{
1
2

∥∥V i
ret(r)−V i(r)

∥∥2
+ γ

∥∥V i
ret(r)

∥∥
TV

}
,∥∥V i

ret(r)
∥∥

TV = ∑
xyz

∥∥∇V i
ret(r)

∥∥ .
(S15)

After 3D inverse Fourier transform, the scattering potential of the object is reconstructed, and the corre-
sponding 3D RI distribution can be used for unlabeled 3D imaging of the sample.
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Supplementary Note S3. Validation of the effectiveness of the wsFPDT
method based on simulations and experiments

We illustrate the effectiveness of reconstructing the RI of 3D samples using wsFPDT by simulations. To
match the wavelength tuning range with the actual experimental system, we set the wavelength range of
the illumination source to 430 - 1200 nm in the numerical simulation. As shown in Fig. S1a, a pure-phase
microsphere with a diameter of 5 µm is placed at a distance of Z2 = 400 µm from the sensor plane. The
RI values of the microsphere and its surrounding medium are 1.594 and 1.58, respectively. Figure S1b
displays the diffraction patterns of the microsphere at different illumination wavelengths. Figures S1c1
and c2 illustrate the central cross-sections of the RI spatial distribution in the x−y and y−z directions, re-
spectively. The corresponding axial slice of the frequency support is shown in Fig. S1c3. Using wsFPDT,
we reconstructed the RI distribution of the microsphere from the intensity images acquired at different
wavelengths. Figures S1d1 and d2 show the transverse and axial slices of the recovered result, respec-
tively. Figure S1d3 illustrates the axial slice of the corresponding frequency support. The comparison
between Figs. S1c1 and d1 illustrate that the transverse contour of the microsphere maintains its original
shape. However, when comparing Figs. S1c2 and d2, it can be found that there is an axial extension
of the microsphere, which is caused by the large amount of missing data in the 3D spectrum. To ad-
dress this, the hybrid regularization method was employed to fill the missing information in the spectrum
computationally. As demonstrated in Figure S1e3, hybrid regularization can significantly compensate for
low-frequency information, resulting in more accurate RI estimation during microsphere reconstruction
and alleviating axial stretching.

Theoretically, the spatial resolution of ODT is defined as the maximum spatial frequency in the re-
constructed Fourier spectrum11. Because the optical transfer function (OTF) of wsFPDT is not uniformly
distributed, the resolution varies with spatial frequency10. Hence, we simulated a microsphere with a
smaller diameter. The simulation results show that shrinking the microsphere size (Fig. S1g1, diameter
of 2 µm) leads to an increase in the reconstructed RI and a reduction in axial stretching (Figs. S1g2-
g3), suggesting that the axial resolution of the wsFPDT method improves at relatively high frequencies.
Figure S1g4 shows the reconstructed RI curve as a function of microsphere size, indicating that the wsF-
PDT method has higher accuracy in measuring the RI of high-frequency samples. When the diameter of
the simulated microspheres is reduced to 0.5 µm, the RI reconstruction value is 1.5937, which shows a
high degree of agreement with the true value (1.594) set in the simulation, with an error of 0.0003. Fur-
thermore, to assess the anti-noise performance of the algorithm, we further conducted simulations under
different noise conditions. Figure S1h1 shows the raw intensity images and the corresponding reconstruc-
tion results with 5%, 15%, and 25% Gaussian noise, respectively. Analyzing the sample RI on the central
x−y cross-section of the reconstructed results, we found that the reconstruction error remains small even
at higher noise levels. For example, under 30% noise, the maximum RI reconstruction error does not
exceed ± 0.0002. Simulations were repeated thirty times independently for each noise level. Overall,
as the noise increases, the error of the reconstructed RI tends to increase, with only a mild reduction in

7/27



1
.5

8
1
.5

9
4

R
I

Simulated bead
Reconstruction

Process

Hybrid 

Regularization

1
.5

8
1
.5

8
7

R
I

0
7

(l
o
g
)

Forward Model

Sensor

Z2

W
a
v
e

le
n

g
th

-t
u
n

a
b
le

 

ill
u

m
in

a
ti
o
n

B
e
a
d

λ = 1200 nm

λ = 800 nm

λ = 430 nm

Intensity

0

1

a.u.

b

a

0
7

(l
o
g
)

c1

c2

c3

d1

d2

d3

e1

e2

e3

x

y

x

y

x

y

z

y

z

y

z

y

kz

ky

kz

ky

kz

ky

1.58

1.59

RI

Distance (μm)
0 105

f1

1.58

1.59

RI

Distance (μm)
0 4020

f2

c1

e1

d1

c2

e2

d2

Reduce the diameter of the simulated bead: 

1
.5

8
1
.5

9
4

R
I

x

y

Simulated 

bead
g1

1
.5

8
1
.5

8
9

R
I

x

y

wsFPDTg2

1
.5

8
1
.5

8
9

R
I

wsFPDTg3

z (μm)

RI

200

1.58

1.59

h1

w/ 5% 

Gaussian 

noise

Raw image wsFPDT

x

y

w/ 15% 

Gaussian 

noise

Raw image

w/ 25% 

Gaussian 

noise

Raw image

x

y

wsFPDT

x

y

wsFPDT

1.585

1.59

RI

Diameter (μm)
0 51

g4

1.5869

1.5871

RI

1.5870

Noise level (%)

5 10 15 20 25

Add  Gaussian noise to the raw intensity images:

h2

302 43

Figure S1. a A schematic diagram of the simulation model. b Diffraction patterns of the forward
model simulation. c1, c2 Central slices of the model RI. c3 Axial slice of the 3D scattering potential
spectrum. d1-d3 Simulation results using the wsFPDT method without (w/o) the hybrid regularization.
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the mean (Fig. S1h2). Consequently, the wsFPDT method demonstrates the ability to reconstruct 3D RI
distributions quantitatively with high fidelity.

To evaluate the 3D reconstruction capability of wsFPDT for complex samples, we simulated a syn-
thetic cell phantom with inhomogeneous RI and fine structures as the test sample. Figure S2a shows the
3D view of the cell phantom. Figure S2b illustrates a y− z cross-section containing two lipids (diameter
2.5 µm) distributed along the z-axis. As mentioned above, the axial resolution of the system varies with
spatial frequency due to the inhomogeneous distribution of the OTF in frequency space10. Here to match
the reconstructed axial stretch of the lipids (∼5.5 µm), we set the interval to 11 µm to ensure that they can
be resolved exactly in the reconstruction. The x−y slice in Fig. S2c reveals horizontally distributed bars.
The 3D view of the reconstruction result is demonstrated in Fig. S2d. The results of the RI reconstructed
without hybrid regularization show a severe elongation of the axial features due to spectral missing (Fig.
S2e), while the lateral resolution is significantly better than the axial resolution (Fig. S2f). Figures S2g
and h show that the reconstruction results of axial features are greatly improved and artifacts are reduced
with hybrid regularization. It is apparent from the RI curves in Figs. S2i and j that the wsFPDT method
allows the reconstruction of the fine structures located in both axial and transverse directions. Thus,
wsFPDT is capable of tomographic imaging samples with complex 3D structures.

To verify the effectiveness of the wsFPDT method in practical applications, we used micro-sized
microspheres as samples for our experiments. Specifically, the mixture of polystyrene microspheres
(Polysciences Inc., n = 1.594 at λ = 483 nm) of different diameters (mainly 3 µm and 5 µm) are im-
mersed in RI matching oil (E High Dispersion Series, n = 1.58, Cargille). Figure S3a demonstrates the
raw image acquired directly by the image sensor. To demonstrate the quasi-uniform, high-throughput
3D tomographic capability of wsFPDT, we reconstructed three regions from the full field-of-view (FOV):
the upper left corner, the central region, and the right edge, marked with blue, red, and green boxes,
respectively. Figures S3b-d display the enlarged diffraction patterns of the three selected regions, respec-
tively. Figures S3b1-d1 show the reconstructed RI slices at the focus plane, respectively. We selected
microspheres with diameters around 5 µm in each of these three results for analysis, marked by blue,
red, and green circles. The x− y and x− z slices containing the centers of the selected microspheres are
shown enlarged in Figs. S3b2-d2 and b3-d3 for analysis. The RI values along the x and z directions are
depicted in Fig. S3e. It can be seen that the wsFPDT method recovers the shape of the microspheres well
in the transverse direction, and there is a large extension in the axial direction, which is basically consis-
tent with the above theoretical analysis. However, the reconstruction results show that the axial stretch
of the beads is somewhat worse than the simulation results, which may be the result of a convolution
between the PSF and the bead shape. Compared to the reconstruction results in the central region of the
sensor (marked with the red box), there is no significant degradation in the imaging results in the edge
region (marked with the blue and green boxes). These experimental results indicate the wsFPDT method
provides quasi-uniform lateral and axial resolution for 3D tomography across the full FOV.

Furthermore, we also selected two smaller microspheres and analyzed the reconstruction results (Figs.
S3f-g). Figures S3f1-f2 (Figures S3g1-g2) show the RI values along the lateral and axial directions corre-
sponding to the dashed lines in Fig. S3f (Fig. S3g). After 3D reconstruction on microspheres over the full
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FOV, we selected thirty 3 µm microspheres and thirty 5 µm microspheres each and statistically analyzed
the reconstructed RI (Fig. S3h). The statistical results show that the mean value of the reconstructed RI
for 3 µm microspheres is 1.5865, which is 0.0015 higher than the reconstruction result of 1.585 for 5 µm
microspheres. As the sample size decreases, the axial stretching of the reconstruction is alleviated and
the accuracy of the RI is improved.

Figure S4 demonstrates the 3D RI reconstruction of mouse mononuclear macrophage cells using the
wsFPDT method. Figure S4a shows the 3D rendering of a round cell, with different directional slices
shown in Figs. S4a1-a3. Figures S4b and c reveal similar results for the other two cells of different
morphologies. RI slices suggest that RI is not uniformly distributed within the cell. Areas with a high RI
indicate biological structures, while areas with a low RI may be areas of cytoplasmic distribution. The
consistency between the results reconstructed by wsFPDT and the RI distribution measured by the ODT
method using a 60× objective demonstrates the feasibility of the proposed method12.

12/27



z

x

y

z

x

y

z

x

y

y-zx-y

a

b

c

x-y

x-y

a1 a2

a3

b1 b2

b3

c1 c2

c3

x-z

1.33 1.35RI

Figure S4. Experimental results of mouse mononuclear macrophage cells. a-c 3D rendering of 3
different cells. a1-c1 The x− y slices of RI distribution in a-c. a2-c2 The slices corresponding to the
blue lines in a1-c1. a3-c3 The slices corresponding to the yellow lines in a1-c1. Scale bars: 10 µm.

13/27



Supplementary Note S4. Analysis of spectral coverage in wsFPDT method

S4.1 The number of input images
In wsFPDT, the vertices of Ewald spectra at different wavelengths are located at the origin of the fre-
quency domain. During iterative reconstruction, it can be used for updating due to the enough overlap
of frequency domain spherical caps corresponding to adjacent wavelengths after digitization (Fig. S5a).
To achieve efficient and effective sample reconstruction, we need to determine the minimum number of
incident wavelengths that guarantee spectral filling, minimize the number of images captured in the ex-
periment, and enhance computational efficiency. We explored the effect of the number of raw images
collected on the experimental results in a fixed wavelength range (430 - 1200 nm). We still use a pure
phase microsphere with a diameter of 5 µm as a simulation model. The spectral support domains and
the corresponding RI reconstruction results for the number of input images of 6, 21 and 57 are presented
in Figs. S5b, c and d, respectively. Comparing Figs. S5b1, c1 and d1, it can be found that the spectral
coverage increases as the number of images increases. Correspondingly, the axial stretching of the mi-
crosphere is alleviated (Figs. S5b3, c3 and d3) and the reconstructed RI values are increased. Figures
S5e and f show the variation of axial stretch length and RI maximum with the change of the number of
images, respectively. The axial stretch length of the microsphere converges when the number of images
is greater than 42, and the RI size that can be recovered also converges when the number of images is not
less than 57.

In the experiments, to ensure the continuity of the spectrum while reducing the computational effort,
we acquired 57 raw images, which took about 6 seconds (including the exposure time of the camera, the
time to tune the wavelengths and switch the RF channels of AOTF). To obtain full-field recovery results,
when processing the experimental data, we usually split the original image into 9 × 7 sub-regions (each
sub-FOV of 500 × 500 pixels), with at least 50 pixels of overlap on each side of the adjacent sub-
regions. By using parallel computing and GPU acceleration, a full-FOV high-resolution 3D tomography
result (15488 × 11056 × 256) is created by using an alpha-blending stitching method with the total
computation time about 30 minutes.

S4.2 The influence of wavelength-scanning range on axial resolution
It is known that the radius of the Ewald spherical shell decreases as the wavelength increases so that the
corresponding complex amplitudes at long wavelengths fill the low-frequency region of the spectrum,
as is shown in Fig. S6a. Consistent with the previous simulations, a microsphere with a diameter of 5
µm is still used as the simulation object. The first row of Fig. S6b shows the results of the spectrum
support domain and the corresponding RI reconstruction for the wavelength range of 430 - 1200 nm.
The frequency support of the wsFPDT method is very narrow at low-frequency domain, resulting in a
limited recovery of the low-frequency signal of the sample, which makes the RI reconstruction results
of the microsphere samples appear “double-peak” in the axial direction. With only the non-negativity
constraint, the “double-peak” phenomenon still exists (the 2nd row). After the hybrid regularization
method combining TV regularization with non-negativity constraint (the 3rd row), the low-frequency
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part of the spectrum is well-filled, resulting in an increase in RI value and the disappearance of the axial
“double-peak” phenomenon. Then, we explored the effect of the upper limit of the wavelength range
on the axial resolution limit through simulation. It can be found that as soon as the upper limit of the
wavelength scan range reaches 3.5 µm, the “double-peak” phenomenon basically disappears (the 1st
row Fig. S6c) without any regularization methods. Simultaneously, the reconstruction results show a
smaller axial stretch length of the bead and an increase in the RI value. Additionally, the axial stretch
will shrink further after the hybrid regularization method. The low-frequency part of the 3D spectrum can
be somewhat filled by raising the upper limit of the wavelength range. Nevertheless, the axial elongation
and small RI valuation caused by the missing cone problem cannot be avoided.
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Supplementary Note S5. Analysis of multi-angle illumination experimental
scheme in LFOCT systems

The optical diffraction tomography (ODT) experiments13, 14 based on the use of conventional microscope
platforms typically use multi-angle illumination schemes to obtain a doughnut-shaped transfer function,
resulting in higher axial (and lateral) resolution. However, it is difficult to use an experimental scheme
with multi-angle illumination in a lens-free system to obtain high-resolution 3D imaging over a large
FOV. In the following, we will illustrate this with specific experiments.

First, the distance between the sensor and the sample is usually a few hundred microns or even 1 mm
in LFOCT systems15, 16. As shown in Fig. S7a, according to instructions in geometrical optics, which is
fully based on Fermat’s principle, the imaging position of the sample changes with the illumination angle.
We designed a simple multi-angle illumination structure (as shown in Fig. S7b) to illustrate a common
phenomenon of missing data caused by images ‘flying out’ of the measurable FOV of the sensor under a
large-angle illumination. As shown in Fig. S7c, this simple angle-variable illumination system consists of
a 3D-printed multi-angle mount (containing 20 fixed angles with a 10◦ angle interval) and a single-mode
fiber-coupled illumination source (LP660-SF20, Thorlabs, the United States). In the experiment with only
the illumination angle changing, Figures S7d-g show the diffraction images of the fixed sample captured
at 4 different illumination angles (5◦, 25◦, 45◦ and 65◦), respectively. To observe the imaging behavior
at the edge of the sensor, we select the area marked by the blue box. As the illumination angle increases,
the image ‘flies out’ of the sensor’s measurable range (as shown in Figs. S7d1-g1). According to the
geometric relations, if an LFOCT system (defocus distance Z2 ∼ 400 µm) has a large angle illumination
of more than 60◦, the image of the object will be off by more than 600 µm. Due to the loss of information,
in a lens-free 3D imaging system based on multi-angle illumination, the imaging resolution decreases in
the annular region near the edge of the sensor. The movement of the sample imaging position must be
pulled back to the correct position by projection and alignment algorithms, and this is a complex and
time-consuming operation.

Moreover, we choose a Siemens star as the observation target (marked with the red dashed box) and
can find that it gradually elongates along the illumination direction as the illumination angle increases (as
shown in Figs. S7d2-g2). This indicates that the angularly varying illumination also causes distortions
in the imaging process, which creates problems in image alignment and requires additional calibration
procedures17. For simple sparsely distributed objects, region selection can be performed based on the
center of the object imaged18. However, as shown in Figs. S7h and i, for complex objects (e.g., USAF
target), the increased illumination angle results in diffraction patterns of USAF targets that are not only
significantly distorted but may be mixed with diffraction rings of other targets. So the image distortion
imaging center is difficult to be determined. And the down-sampling process of the diffraction patterns
by sensor imaging exacerbates the signal aliasing. The aforementioned reasons make the selection of the
reconstruction area difficult and aggravate the difficulty of image registration. The use of only on-axis
illumination provides the prerequisite for the wsFPDT method to perfectly circumvent these problems
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and achieve quasi-uniform pixel-super-resolution imaging over the full FOV (Fig. S7j). Figures S7k-m
display the diffraction images of the fixed sample captured at λ = 430 nm, 810 nm and 1200 nm, re-
spectively. The blue-boxed areas adjacent to the edge of the sensor are enlarged and displayed in Figs.
S7k1-m1. It can be seen that the diffraction pattern of “MARK” expands in place as the wavelength
increases, yet the signal features are not lost. The dot matrix (Figs. S7k2-m2) further illustrates that
the image maintains its spatial position and the diffraction ring diverges. As summarized in Table S1,
we compare the frequency support and reconstruction resolution of LFOCT systems that use either multi-
angle or wavelength-scanning illumination schemes. For the LFOCT platform based on angular-scanning
illumination, the sensor can capture diffraction patterns under all illumination angles within the central
region of the measurable field, thus ensuring an isotropic scattering potential spectrum for the sample.
However, near the sensor’s edge, the diffraction patterns are more likely to ‘fly out’ of the measurable
area, leading to a reduced number of recorded diffraction patterns and a corresponding anisotropic scatter-
ing potential spectrum. Consequently, the imaging resolution diminishes as the distance from the sensor’s
edge increases. In contrast, the on-axis wavelength-scanning illumination scheme allows for the record-
ing of diffraction patterns at all wavelengths, maintaining an isotropic scattering potential spectrum and
uniform imaging resolution throughout the sensor’s FOV, regardless of the sample’s position.

Finally, it should be noted that the key to high-quality reconstruction is the precise calibration of the
imaging system. For experimental systems based on angular scanning, especially those that use a robotic
arm to control the scanning of the laser source17, the repeatability of the experiment depends on the accu-
racy of the mechanical motion. When conducting multiple experiments, the reciprocal motion introduces
cumulative errors that can result in the need for more frequent calibration of the experimental system.
In addition, accurately measuring the illumination angle remains challenging, whether using fixed illu-
mination arrays18, 19 or mechanical-scanning source17. For the wavelength-scanning-based experimental
setup, we only need to use a spectrometer to calibrate the illumination wavelengths. Compared to the
measurement of the illumination angle, the calibration process is relatively simple. Since the entire setup
is fixed on the optical stage, the system stability depends entirely on the supercontinuum laser and the
AOTF, especially the stability of the latter. With the power stability of the AOTF used below 1% (ac-
cording to the instrument specification), we can safely conclude that our experimental setup exhibits high
accuracy and repeatability over extended periods.
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Table S1. Comparison between the LFOCT systems based on multi-angle illuminations and only
on-axis illumination.

Illumination scheme Multi-angle On-axis only

Measurement principle Angular scanning Wavelength scanning

Frequency support
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rla

p
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Wavelength range:
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Wavelength: 430 nm

Angle range: -35°- 35°

Target located at the center of the FOV:
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Supplementary Note S6. Illustration of wsFPDT method for quasi-uniform
pixel-super-resolved tomography over the full FOV

To further illustrate the tomographic capability of the wsFPDT method with quasi-uniform, pixel-super-
resolution over the full FOV, the quantitative phase resolution target (PRT) was placed at different po-
sitions of the sensor for experimental validation. In the experiment, we placed the PRT directly on the
surface of the sensor and calculated its defocus distance to be 414 µm. Then, we select a resolution
unit (marked by the black box in Fig. S8a) as the test target for reconstruction, and Fig. S8b shows the
details of the test target under the bright-field microscope (10×, 0.45 NA). We placed the test target at the
edge and central regions of the sensor FOV (shown in Fig. S8c and d) for the experiments, respectively.
Figures S8e and f display the reconstructed 3D RI distributions for the test target located at the edge and
center regions of the FOV, respectively. Figures S8e1 and f1 show the RI slices at the focusing plane (z
= 0 µm) for the two 3D reconstructed results in Figs. S8e and f, respectively. The elements of Groups
8-9 are zoomed in for comparison (see Figs. S8e2 and f2), and the line profiles in Fig. S8g demonstrates
the lateral half-width resolution of 775 nm regardless of whether the test target is located at the edge
of the FOV or in the central region. Figures S8e3 and f3 display the y− z cross-sections corresponding
to the solid lines in e2 and f2, respectively. The axial line distributions corresponding to Element 3 of
Group 9 (Fig. S8h) illustrate the z-axis resolution is 5.43 µm. The RI distributions of the two sets of
experimental results (the test target located at the edge and center of the FOV) are essentially the same,
supporting the claimed ability of imaging with quasi-uniform pixel super-resolution over the full FOV.
Overall, the experimental results based on resolution targets and microspheres are sufficient to demon-
strate the feasibility and capability of the proposed wsFPDT to perform non-interferometric accurate 3D
RI reconstruction from intensity-only measurements.

However, we must admit that in LFOCT systems, even with on-axis illumination, scattered waves
carrying high-frequency information caused by small-sized objects propagate to the sensor plane and
they cannot be captured due to the limited FOV. According to the theory of lens-free resolution analysis16,
the reconstruction resolution depends on the size of the reconstruction area we choose and the defocus
distance. So, in our LFOCT platform (especially in the edge region), although a lot of information with
high-frequency information has gone out from the sensor boundary, the required distance is small for
the theoretical super-resolution results we want to achieve, especially compared with that of the oblique
illumination and other angular-variable methods. For example, in our system, the defocus distance Z2 =
420 µm is known, and to achieve a half-width resolution of 0.775 µm, the side length of the minimum
reconstruction sub-FOV is 242.6 µm. That is, to ensure the accurate capture of essential high-frequency
information, it is recommended to position the center of the targeted area at a minimum distance of 121.3
µm away from the sensor edge.
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Supplementary Note S7. Comparison of the wsFPDT method with the
swept-source optical coherence tomography (SS-OCT) technique

The wsFPDT method proposed in this work is conceptually similar to the swept-source optical coherence
tomography (SS-OCT) technique20–22, which also adopts a wavelength-scanning illumination scheme to
probe 3D information of biological samples. Instead of using full-field detection based on a 2D array
detector, the SS-OCT technique is commonly implemented in a point-by-point scanning manner with
a high-speed point photodetector to measure the interference signal of the backscattered object beam
with the reference beam. The longitudinal single-point depth scan (i.e., A-scan, a term borrowed from
ultrasound imaging) is achieved by scanning from short to long with fast tuning wavelength in a single
scan cycle. And longitudinal cross-sectional scan images (i.e., B-scan) are achieved by moving the
probe laterally, and multiple B-scan data are synthesized to build up a 3D volumetric image. Despite the
conceptual similarity, there are several fundamental differences between these two methods, as compared
in Table S2.

Table S2. Comparison between the SS-OCT and wsFPDT methods.

Methods SS-OCT wsFPDT

Detection principle Interferometric Non-interferometric

Measurement principle Point-by-point scanning Full field (w/o moving devices)

Detected signal Backward scattering (dark field) Forward scattering (bright field)

Spectral coverage

kz
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frequency 

support 

in reflection

Recorded frequency 

support in transmission

kx

%
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 (

lo
g
)

Wavelength range: 430 - 1200 nm

Suited sample Strongly scattering (tissues) Weakly scattering (cells)

Result interpretation Obscured Quantitative RI

As summarized in Table S2, the distinct advantages of the wsFPDT over the SS-OCT include its
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non-interferometric detection principle and full-field measurement characteristic, allowing motion-free
volumetric imaging with a relatively simple setup. In terms of the detected signal, the SS-OCT mea-
sures the backward scattering field, providing a much wider spectral coverage, especially along the axial
direction. Since there is no overlap between the spectrum corresponding to each wavelength, SS-OCT
employs interferometry to measure phase23, 24. But the introduction of interferometric optical paths in-
creases the complexity of the configuration. In contrast, the wsFPDT method measures the forward
scattering field, and the Ewald sphere is tangentially overlapping at the k-space origin, resulting in lim-
ited spectral coverage. However, the inherent sufficient overlapping between the spectra can be used for
phase recovery. Moreover, it can be found that there is a complete absence of low-frequency informa-
tion in an SS-OCT spectrum. In other words, the relationship between the phase, thickness, and RI of
the object is completely obscured in the SS-OCT measurement, and the signal is generally a dark-field
speckle pattern. On the other hand, the wsFPDT method can recover the quantitative RI distribution of
the sample containing low-frequency information by measuring the bright field transmitted signal. Re-
garding the measurable sample type, although the reflection-based geometrical configuration allows the
SS-OCT method to achieve high axial resolution, it is only suitable for strongly scattering samples that
can produce strong backscattered signals, such as biological tissues. Whereas most biological cells are
transparent and weakly scattering such that they produce almost no backscattering signal when being
illuminated with a plane wave. In such cases, the wsFPDT is more suitable to recover their morphology
and quantitative RI distributions, despite its relatively low axial resolution.
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